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ABSTRACT — Finite range effects in heavy ion transfer reactions are 

discussed using a previously developed formalism where the bound state wave 

functions are represented by the asymptotic spherical Hankel functions, Using 

the asymptotic approximation and a local recoil momentum a DWBA com- 

puter code was developed wich has the simplicity of a zero-range program 

and allows the inclusion of finite range and recoil effects. Good agreement is 

obtained with results from full finite range calculations for one nucleon transfer 

reactions. The effects of the Coulomb terms in the interaction are discussed. 

1 — INTRODUCTION 

Finite range and recoil effects are known to be generally very 

important in transfer reactions induced by heavy-ions. Various 

approximate methods [1]-[11] have been proposed for treating 

these effects in the distorted wave Born approximation (DWBA). 

By using them we obtain a more detailed understanding of the 

reaction mechanism, particularly of those aspects which are 

specifically related with the finite range of the interaction. 

Furthermore they are useful since full finite range calculations 

are time consuming, specially when it is necessary to include 

multi-step contributions to the reaction cross section. 

Here we report on an extension of the Buttle and Goldfard 

approximation [1] in which the recoil effects associated with the 

(*) Research supported by Centro de Fisica Nuclear (INIC). 
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finite mass of the transferred particle can be easily included. 
From another point of view our model for the transition ampli- 

tude is a generalization of the zero range approximation to states 

with orbital angular momentum different from zero. The reaction 

form factor, which may include the effects of recoil, is calculated 

using analytical methods and the DWBA calculation retains the 

simplicity of a zero-range code. 

Results of calculations using this model for various reactions, 

including cases where the contribution from unnatural parity 

processes is important, are compared with full finite range cal- 

culations. The significance and reliability of the model is discussed. 

In the present calculation and also in those of a preceeding short 

paper [12] the recoil momentum is obtained using a local momen- 

tum approximation. 

With the same model and approximations that are described 

here in detail we have performed calculations for the cross section 

and analysing powers of the **Ni(‘Li, *Li)®°Ni reaction at an inci- 

dent energy of 20.3 MeV. In this work, published elsewhere 

[13], [14], it was shown that the agreement between the DWBA 

predictions and the observed Q-value dependence of the vector 

analysing power was greatly improved when the recoil momentum 

is generated using a semi-classical model proposed by Brink 

[15], [16]. 

2— DWBA FORMALISM 

The DWBA transition amplitude for the transfer reaction 

A(a,b)B where a = b.+ x and x is the transferred cluster is given by 

Tea = Jang dry x" (4) < BbIV[Aa> XC) 
where the coordinates r,,, r,, rf, and r, are illustrated in Fig. 1 

and x‘*) and mi are elastic scattering wave functions in the 

entrance and exit channels. Using a fractional parentage expan- 

sion of the internal states of a and B into states of x and 

performing the integration over the internal coordinates of b, 
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Fig. 1— The coordinate vectors for a general transfer reaction. 

A and x the transition matrix can be written, using essentially 

the notation of ref [10], as 

<J,M, s,o,|V|J,M, s,o,> = 

> (JaMy in6|JpMpg) (LA i 8:1 4) 
Livi, 

Spo, * 1 1 oT 1 LA 
; Cy (s, Gy S,-o, |i § ye % AL, i, B, 4 ? (2) 

2 

where L=(2L+1)¥%, 

ath Se 5 a eaye s ees (3) We Sagan anes © Aree gob Tye 

  

and the reduced amplitude £ is given by 

hee et het 

4 Binge ME AY RES G0) HENNE). 
(4) 
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Here L is the total orbital angular momentum transfer in the 

reaction and the spins of A, a, B,b and x are denoted by J,,s,, Jy; 

s, and s,. The quantities 0, i, and 2, j, are fractional parentage 

coefficients corresponding to : a bound x with angular momentum 

quantum numbers |, j, and 1,j,. The form factor of the reduced 
amplitude is given by 

f2 1 af bth : 

ta Shean = > (1,4, 1,4,] LA) 
1/2 xis 

Whee: 4 az 

"R,, (Fa) bas Cri v R, j ti a Cr)» (5) 
2°2 2 y ae | a i 

where R, i, and R, i, are the normalized radial wave functions 

of x in the projectile and residual nucleus. In the conventional 

form of the DWBA the interaction V responsible for the transfer 

is assumed to be V,, in the post representation and V,, in the 

prior representation. 

It is well known that there is a strong localization of the 

integrand in eq. (4), as a function of the separation R between 

the heavy ion cores, due to combined action of the Coulomb 

barrier and of large absorption for small R, with the lack of 

overlap between the bound state wave functions at large R. It is 

therefore appropriate to treat the deviations from R in the argu- 

ments of the distorted waves in an approximate way. To discuss 

such approximations it is useful to perform Taylor expansions of 

x) and x. Representing r,, Dy r we can write 

         

    

8 LDA © pits R ) (-* ( R) (4) (R) 

i, i, 3 Li, ig SCD RO a 

(6) 

where y = M,/M, , 

M, M, 
SN i ae V3 Vig (7) 
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and 7, (V,) is the gradient with respect to R and acts only on 

the function \‘*? Gir ). Notice that we could have used a4 

instead of r, as integration variable. A similar derivation gives 

eee 

Vj 
         

Ok ee As, Coe) "(RY X00 GR), 
(8) 

where r,, was also represented by r , » =M,/M, and 

M, M, 
=F - v,- (9) 

M, * Ms 
  

Both eqs. (6) and (8) are exact and will be used as the starting 

point for our analysis. 

When comparing eqs. (6) and (8) we notice that the vector 

r in the translation operator is the argument of the projectile 

and residual nucleus bound state wave functions, respectively. 

In relation with our model this makes the expression (6) more 

convenient to use in the post form of the DWBA transition 

amplitude while the expression (8) is more convenient to use in 

the prior form of the DWBA transition amplitude. 

In eqs. (6) and (8) the effects due to recoil are described 

by the operators exp (r.0) and exp (r.Q). These operators 

become equal to the identity operator if we assume that the 

transferred particle has no mass. This approximation, known as 

the no-recoil approximation, is described in ref, [1]. We can take 

into account the recoil effects to all orders in our expansion of 

the translation operator by assuming a local momentum approx- 
imation when operating with exp (r.0) or exp (r.Q) on the 

distorted waves. In this approximation the operator 0 in eq. (7) 

is replaced by the recoil momentum, 

  = Terre 10 Se. ao 
where k, and k, represent local momenta in the entrance and 
exit channels, respectively. The usual procedure is to choose the 

direction of p along the bisector of the scattering angle corre- 

sponding to the distance of closest approach for a Coulomb orbit 
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in the exit channel. It has been shown by Braun-Munzinger et 

al. [17], that the reduced transition amplitude depends weakly on 

that direction. 

We can follow a different approach in which the recoil 

momentum p is generated using a semiclassical model [15], [16]. 

This has been described in references [13], [14]. We obtain 

Q 1 
p=-n(> +> My) (11) 

where n is a unit vector in the reaction plane tangent to the 

projectile trajectory at the point where the transfer is more 

probable, v is the relative velocity between the heavy ions at 

that point and Q is the reaction Q-value. 

3— USE OF SPHERICAL HANKEL FUNCTIONS 

The most simple way to represent the bound states in a 

heavy ion transfer reaction is to use the Hankel function which 

describes the asymptotic behaviour for large r. In this approxi- 

mation, which we shall call the asymptotic approximation, the 

form factor of the reduced amplitude in the post representa- 

tion is 

lo] 11 L 4 faa Ren) =i * * & (14,14, |LA) Noi *h,® (i8[ Rr) Li, i,A 
1°2 Ay AS 

2 

  
Xr * x i x IN A 

y. (R-r) (V?-a?)N, i hy (iar) ¥,*(r); (12) 
h 

2M 

where we have used the Schrodinger equation of nucleus a to 

replace the V,, interaction and assumed a, = a and £, = B. Using 

a recoil momentum p the r integration in eq. (6) is given by 

72 
h ly 1 +1, 

N{N,i (-1)? ?   
ey 

‘per fl 2 He — 

Jar e fs 1k SEO aa 

r 
> (1,4, 1-4, | LA) (-1)° Ha, (R,p,a,B), (13) 

Ay Ag é 
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where 

5 Z Xr es 

Ba (Ri p.a,8)= fdr [hi (ig|R-r|) Y,° (Rr) I]* 
p lial Reb Sika” 

4 fs 

(vi @) h (iar) i ee aie (14) 

The procedure which is usually followed to calculate this type 

of integral is to separate variables in he” (if | R-r|) a (R-r) 

using the well known addition theorem “for Hankel functions 

[1], [18]. This, however, involves an expansion that in general 

does not converge uniformly and requires further approximations 

in the calculation of the folding integral. As shown in the 

Appendix 3 of ref [10] the intergral (14) can be calculated 

analitically without the above shortcomings. Using this result 

and eqs. (6), (13) and (14) we finally obtain for the reduced 

amplitude in the asymptotic approximation 

1,1, LA 4r a* Nee 
j ee ee > CAL, Ae|LA) {dR boos (R) yi" (ip ) 
12 Toate de © 5 

Le Ac 

Bia ee aE SR CAS (15a) 

where 

Foi 1 Ra?) = Fiat an te ra i (15b) 
1° Cf I di ine C.F Se ae se 

Lik 
CT (0, 012,0) 

Ev nse 
Dy yt ter a (ay LB t at 

12 ¢ er 

(L,OL,0/1,0), (15¢) 

  

" i? (21,+1)!! 

ee OM COLE EV COE 41) 1! 

L 
r 

  N , 

oNo +1 
a 

LL . ic h®) (igR), (15d) 
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(21+1)!!=(214+1) @QI-—1)... and 

L,=1,—1, . (16) 

The orbital angular momenta 1, and L, have a very simple physical 

interpretation [11]: 1, is the part of the total balance of orbital 

angular momentum in the transfer process which is due to the 

—_ 

2 
| 
  

  

Fig. 2— Vector coupling of the orbital angular momentum operators 

in a transfer reaction. The vectors are defined in the text. 

finite mass of x and is usually called the recoil angular mo- 

mentum. From the angular momentum coupling in eqs (15) we 

conclude that L, is the orbital angular momentum transferred 

from the relative motion of the heavy ion cores A and b in the 

entrance channel to the relative motion of A and b in the exit 

channel. The coupling of orbital angular momentum in a transfer 

reaction is illustrated in Fig. 2, where the sum |, + I, (equal to 
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IL.—L,) is represented by L,. The no-recoil approximation is 

obtained with 1, = 0, which implies L,=L and 1,=L,. With this 

approximation the eqs. (15) reproduce the radial form factor of 

ref. [1], 

2 
Ls h 

$y. 7-1: ¥2 Sede Fy urs CR» pe) =C-1) 1, (1,0L0/1,0) 2M 

1 
1 

- N,N’ i h® (ipR). (17)   
+1 

a 

This result shows that the present model can be considered as a 

natural extension of the Buttle and Goldfard approximation [1]. 

The most general selection rule due to parity conservation 

in the reaction involves the quantum numbers L, and 1,. The 

particular form of angular momentum coupling in eq. (15c) 

implies that [11] 

1.+1L,+1,+1, = even. (18) 

In the exact DWBA matrix element there is no restriction on 

the values of 1,. However due to the small mass of the trans- 

ferred cluster relative to the heavy ion cores only the first few 

values of 1, are likely to give important contributions to the 

transition amplitude. This has been shown, for instance, in the 

work of Braun-Munzinger et al. [17]. In the asymptotic approxi- 

mation there is an upper limit for the allowed values of 1,, since 

according with eq. (16) 1,<1,. Eq. (16) means that |, is anti- 

parallel to |,. This selection rule is a consequence of our de- 

scription of the bound state wave function of x in the projectile 

as one Hankel function. With this approximation we assume 

that the transfer process is insensitive to the finite range of the 

binding potential of x in a. In fact for one Hankel function the 

product V,, R, ; Ye, present in the form factor, has zero range 
ae | 1 

(see eq. (A.23) of ref. [10]) and therefore it cannot generate an 

orbital angular momentum larger than 1. For a finite range inter- 

action we can have 1, >1,. Notice that the asymptotic approxi- 
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mation allows for the inclusion of recoil effects and at the same 

time maintains the radial form factor X, for each 1,, proportional 

to N,N’. It is therefore particularly suited to study the depen- 

dence of the cross section on N,N?’ which is a well defined 

quantity in heavy ion transfer reactions, particularly at sub-Cou- 

lomb energies [19], [20]. 

Following essentially the same type of derivation we can 

readily obtain from eq. (8) the reduced transition amplitude for 

the asymptotic approximation in the prior form 

  
; An 1 1 LA (prior ) 14+14+L A * = 12 lf ye ‘ : dR Y, ¢ ie (-15 ae (LALA. [La) [ BYR) 

Le Ac 

( prior ) 1 Ra 
: yi" (ip ) Furia CRP) yo" CR) x Car)... (19a) 

  

  

where 

( prior ) * ( prior ) 

Foy eg CRP i en Sa (CR), (19b) 
1°2 er 12° (oe 192-2 cr 

( prior ) be CRE tt 

Sei ; 
121, er 2M,y (21,4+1)!! (2L2+1)!! 

L’ 

N,N? 2" i h® (iaR OO eet 1 L (ia. ); (19c) 

and 

‘=1,—1,. (19d) 

This selection rule, involving the angular momentum L/ = |,—I, 

(equal to |, + L,), implies that in the prior representation 1, <1,. 

We emphasize that as regards the bound states the asymptotic 

approximation is equivalent to a generalization to states with 

1,>0 of what is usually called a zero range approximation in 

a transfer from an s-state. In fact notice that for 1,=0 the 

expression (12) implies that V,, is proportional to a $-function. 
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/ 

4—COULOMB EFFECTS 

In the preceeding analysis we have assumed that the inter- 

action V in the DWBA matrix element is purely nuclear. Here 

we consider the effects of the Coulomb terms of this interaction. 

In the post representation these Coulomb terms are of the form [21] 

  

L, LC: Lele AV. = bear. bis (20) 

R ry, 

where Z, is the charge of nucleus i and r, = yR+(1-y)r. Since 

AV, has a weak dependence on r(y~1) we can write 

“fi Ly Zine ays Z, Zp @ (21) 
AV, = ——— (1-1/1) - 

R yR 

In the prior representation the analogous approximation yields 

rior Z,Z ZZ e? 

fe TE aye 22) 
: R pR ¢ 

The calculation of the effects of AV, on the transition matrix 

is straightforward using eqs. (21) and (22) although it involves 

integrals of the type 

J (Ryp.0,8) =f dr [h® Cip|Rer|) ¥,° (Ror) I* 
1, Ay Ae 

- hO (iar) ¥" (7) e'P*. (23) 
1 1 

These integrals can be easily calculated for p=0 and were 

discussed in ref. [10]. For p-0 the analytic calculation of 

Ji, dsb de is considerably more difficult as it is shown in the 

Appendix, where an approximate expression is also derived. 

Portgal. Phys. — Vol. 12, fasc. 3-4, pp. 139-161, 1981 149



A. M. GoncaLves et al. — Heavy ion transfer reactions 

5— NUMERICAL RESULTS 

A DWBA computer program called HYDRA [22] has been 
coded in FORTRAN which generates the distorted waves and 
calculates the reduced transition amplitudes using eqs. (15) 
and (19) in the post and prior representations. To illustrate the 
validity of the asymptotic approximation we performed calcula- 
tions for angular distributions which were previously analyzed 
with other DWBA codes in particular with full finite range 
programs. Fig. 3 shows results for the one neutron transfer 

reaction “C(“N,“N)*C,, at E,,, = 78 MeV obtained using the 
same optical model parameters as in ref. [24]. Since this is a 

transfer between two p 4 states the recoil effects can be quite 

large. The calculations of Fig. 3 compare the usual no-recoil 
Buttle and Goldfard approximation with the asymptotic approxi- 

mation described in this work and given by eqs. (15) and (19). 
We emphasize that in both cases the bound state wave functions 
are described by one Hankel function and depend exclusively on 
the parameters N,,a, and N/,6,. The constants N, and N’ were 
extracted from bound state wave function generated in a Woods- 

-Saxon well with geometry parameters r,=1.25 fm and a=0.65 fm. 

We find that in this reaction the asymptotic approximation 

provides an accurate description of the recoil effects. This can 

be seen in Fig. 4 where it is compared with full finite range 

results obtained with the code LOLA for the same optical model 

and bound state parameters and for incident energies of 78 and 
100 MeV. Both curves agree well in shape and in absolute value. 
The product of spectroscopic factors for the initial and final 
states S,S, differs by less than 18% at both energies. In fact 
we obtain in the post representation S,S,=0.50 and 0.60 at 
78 and 100 MeV, while the full finite range calculations [23], [26] 

give S.S,=0.53 and 0.51, respectively. The result of DWBA 
calculations using the code BRUNHILD [17] are also shown in 
Fig. 4 and give S.S,=0.47 and 0.44 at 48 and 100 MeV re- 

spectively. 

Calculations using the asymptotic approximation for the 
proton transfer reaction *%C(™N,™“C)*N at 78 MeV are shown 
in Fig. 5. Good agreement is obtained in shape and magnitude 
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Fig. 3 — Comparison of the DWBA curves for the 12C (14N, 13N) gee Fs reaction 

at E, ,, = 78 MeV obtained with HYDRA using the asymptotic approximation 

and with the no-recoil Buttle and Goldfard (BG) approximation in the post and 

prior representations. The optical potentials correspond to the set 3 of ref. [24]. 

with full finite range calculations [23], [25] performed with the 

same optical model and bound state parameters. These results 

indicate that the degree of convergence of the sum over the 
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recoil angular momentum 1, is well described by the selection 
ruled <t.. 

A test of the dependence of our results on the recoil 
momentum p was performed for the same reaction as in Fig. 4. 

  

    

L i; : I : | ’ H 

2/14. 133 
10.0 CUON, “NPC... i 

Ne — HYDRA 1 
i Rai aes LOLA ’ 
eet ---- BRUNHILD + 

X 4 

eo ay Re E=78 MeV = 
N \ \ 
a 10.0K~~, _ 
& ee | z 

~~ r ° ‘ 
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Oo 
N~N = 4 
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h
e
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u 
T       
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Fig. 4— Comparison of the DWBA curves for the 12C (14N, 18N) pai Pe reaction 

at incident energies of 78 and 100 MeV obtained, with the code HYDRA (full 

curve) using the asymptotic approximation, with the code LOLA [23], [26] 

(point-dash curve) and with the code BRUNHILD [17] (dash curve). 
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Using the local momentum approximation we find that the 

differential cross section is almost insensitive the modulus of p. 

The dependence on the direction of p is small and weaker in 

the post representation than in the prior representation. This is 

1 

probably due to the presence of the (-1)* factor in eq. (19c), 

which for the dominant recoil term in this reaction is -l. 

  

/ | k | : | 
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Fig. 5— Same as in Fig. 5 for the 12C (4N, 13C) SN reaction at 78 MeV. 

The dashed curves show the angular distributions of the L=0 and L=1 

transitions separately calculated with HYDRA. The sum is given by the full 

curve. The experimental values are from ref. [24], 
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In order to study the relative importance of recoil effects 
in the contributions from different values of the total orbital 
angular momentum L we have chosen the **Mg(*0,°N ao aa 
reaction at E,,, = 45 MeV since 1, is different from 1, and also 
because our results can be compared with previous full finite 
range DWBA calculations [27]. This is a transfer from a p1/, state 

to a d*/, state and therefore L = 2,3. The DWBA curves of Fig, 6 

a) b) c) 

      

  

26 4/16, 154,427 MOO PN) ALS 

E oa] 
E NO-RECOIL (L=3) f E tab? 4? MeV 

    

      

   

  

  

             

. 4 RECOIL L=3 
7 

J E 
c + RECOIL L=3 , 
Uv Bey Ne NY 
BL _|. NO-RECOIL (L=3) 4 

> RECOIL L=2 Sa FE RECOIL L=2 pFtor i 

5 
post ] 

HYDRA al L 
prior—-—.— 

post 

0.01 fot i | st 
20° 40° 20° 40° 20° 40° 

Som. 

Fig. 6 DWBA calculations for the 26Mg (10, 15N) TAL reaction at 45 MeV. 
Part a) shows a comparison in the post representation between the contribution 
from L=2 and L=3 calculated with HYDRA using the asymptotic approx- 
imation and the cross section calculated in the no-recoil Buttle and Goldfard 
(BG) approximation which only allows L = 3, Part b) shows the same com- 
parison in the prior representation. Part c) shows the total cross section 
predicted by HYDRA and by the no-recoil BG approximation in both repre- 

sentations. The optical potentials are from ref. [27]. 

were obtained using the asymptotic approximation and the same 
optical model and bound state parameters as in ref. [27]. We 
find that the effects of recoil is either to increase or to decrease 
the cross section whether it is calculated in the prior or post 
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representations, respectively. As a result the discrepancy between 

the post and prior representations in the no-recoil approximation 

is strongly reduced. Fig. 7 shows that there is good agreement 

between the asymptotic and the full finite range calculations 

of Buttle [27] using the code DAISY for both L=2 and L=3 
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Fig. 7— DWBA calculations for the 2°Mg (160, 15N) rc reaction at 45 MeV, 

Comparison between calculations obtained with the code HYDRA (full curve) 

and with the full finite range code DAISY [27] (broken curve), for the L = 2 

and L=3 in the post representation, 
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although there is a factor of about 2 orders of magnitude between 

these two contributions to the cross section. The difference in 

the absolute magnitude of the differential cross section at the 

main peak is less than 10% in the two calculations. 

In the Mg (*°0,7°N ) 27Al reaction the selection on the recoil 

angular momentum is 1,<1 and 1,<2 in the post and prior 

representations, respectively. This difference however does not 

have a marked effect on the cross section, because the contri- 

bution from 1,=2 is very small, as shown in Fig. 8. Thus 

  

27 26 Al Mg ('80,'°N) “Aig ¢ — Eigh= 45 MeV 
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Fig. 8— DWBA calculations for the same reaction as in Fig, 6 and 7 with 

HYDRA using the asymptotic approximation. The left hand side shows the 

contributions to the cross section in the post representation from the allowed 

values of |. = 0 and 1. The right hand side shows the analogous contributions in 

the prior representation where 1. varies from 0 to 2. 

although |, is different from 1, the degree of convergence of 

the sum over I, is well described by the asymptotic selection 

rule in both the prior and post representations. 
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5 — DISCUSSION 

Using the formalism presented in ref. [10] for the approxi- 

mate treatment of finite range and recoil effects a DWBA prog- 

ram was developed and applied to the analysis of quasi-elastic 

heavy ion transfer reactions. 

In our approach the DWBA calculation in reduced to a 

zero-range type calculation since the form factor, wich may 

include the effects of recoil, is calculated analitically. The simpli- 

fication is obtained through the representation of the bound state 

wave functions by the asymptotic spherical Hankel functions. 

This representation provides an accurate description of the reaction 

due to the strong localization of the transfer process outside the 

nuclear surfaces. In this asymptotic approximation the cross 

section is proportional to the product of the squares of the 

normalization of the tail of the bound state wave functions wich 

is a well defined quantity in heavy ion transfer reactions [19], [20]. 

We obtain good agreement with the results of full finite 

range calculations [23], [25], [26], [27] in all one-nucleon transfer 

reactions investigated so far, using considerably smaller com- 

puting times, Also we find that the inclusion in the asymptotic 

approximation of the Coulomb terms, that are present in the 

interaction responsible for the transfer, improves considerably 

the agrement with the spectroscopic factors extracted from full 

finite range calculations. 

Our approximation can be expected to break down in cases 

where a substantial part of the cross section comes from the 

nuclear interior and also in multinucleon transfer reactions where 

the local momentum approximation may be inadequate to account 

for the recoil effects. Within its region of applicability the present 

approach gives a reliable description of finite range and is par- 

ticulary simple to use. It can be useful in coupled reaction channel 

calculations to include finite range and recoil effects with a very 

small increase in the computing time. 

From another point of view we note that the integral on 

the left hand size of eq. (13), which gives the reaction form factor 

in the DWBA, is formally similar to the transfer amplitude in 
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the Brink semi-classical model of transfer reactions (compare 

for instance with eq. (6.16) of ref. [15]). This means that the 

asymptotic approximation can also be applied in the context 

of semi-classical models of transfer reactions. Finally we note 

that the development of approximate methods to deal with finite 

range and recoil effects is made particularly significant by recent 

results [28] where it is shown that the usual form of the DWBA 

is often unable to interpret the transfer reaction data. 

We wish to thank Dr. D. M. Brink, Dr. P. J. A. Buttle and 

Dr. R, C. Johnson for many interesting and valuable discussions 

during the course of this work. The computer time provided at 

the IBM-360/44 of the Centro de Calculo das Universidades de 

Lisboa, where the calculations were done, is gratefully acknow- 

ledged. 

APPENDIX 

FOLDING INTEGRAL WITH TWO HANKEL FUNCTIONS 

The integral 

J (R,pa,8) = fdr [he CiB|Rer]) ¥!* (Re) ]* 
WAL Ag 

: Aco tp. 
> hO. (ior) V2 Cee P'. (A.1) 

1 af 

can be written in momentum space as 

iR.k URGES (R,p.a,8)=fdke" Fe 8)* F, (phe), 

(A.2) 

where Fi. (k,f@) is the Fourier transform of h (ifr) x. (r). 

The calculation of this integral is considerably simplified if we 

neglect the dependence on the angle between k and p in the 
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denominator of the radial part of F, ,,- Assuming p perpendicular 
b Rabb § 

to k we get 

‘ 2 kt eg 

i Ti x alt en kk? 

    y, (p-k). (A.3) 

where a, =(p’?+ a*)”%. This approximation is reasonable as long 

as p is sufficiently smaller than a. Otherwise we can use the 
expansion 

1 4a ie ‘A 
= S Q(z) Y™ (p) ¥™ (ik). (AA)   

(p-k )’ + a” 2pk im 

where Q, are Legendre functions of the second kind and 

Z=(p? + k? + a? )/2pk. 

Using the well known addition theorem 

nN rN A 
Ms (p-k) she at (1,4, L, A, |], 41) Y)"(p) ¥i'(-k) (A.5) 

where L, = ],-1,, 

(21,+1)!! 
C241) INC2E Hi 
  (1,01,0/L,0) 

(A.6) 

ay = (40)4 (-1)" 4, 

and eqs. (A.2) and (A.3), we can write 

L +1 

‘ ap" a 
Jaa, CRP ary = 3a 1 Ca,L, 4, [1 41) = ¥it(p) 

zt i: ‘i a 

- Pak es FF te Mes (Kies) (A.7) 
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This integral is given in eq. (A.36) of Ref. [10]. With this result 
we obtain 

he (R,p,a,B)= 

Set (- 1)" (yagly=a [EA) Ca, 1,4,] LA) 

(21,+1)!! 

C2 LIST CALA) 
  

| eee ven oak Der ade 
Me”) ee Cp) it LL 1 

Ter l 
Tr 

OS 

L+1 
Qa 

ft 1.1, CRea,,2): (A.8) 

where L,=1,-1,, 1, ; , u, has been defined in eq. (28c) and 
122 Seng 

1 

    
Lt 

1 a2 Be 

a bd, (R;@,,8) == | ° ht) bia Ry) ot 2 Ger) |. 
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