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ABSTRACT — The equations that give the misfit dislocation content of 

an arbitrary interface are derived from a general formulation of the coinci- 

dence site lattice model of crystalline interfaces. The equations are solved, by 

introducing a ‘‘dislocation content lattice’, to determine the orientation and 

spacing of the dislocations. The results are amenable to a simple geometrical 

interpretation. Grain boundaries are discussed as an application. 

1 — INTRODUCTION 

Arrays of misfit dislocations [1,2] appear in grain boundaries 

between crystals with relative orientations deviating slightly from 

a coincidence site lattice (c.s.1.) orientation. At such special 

orientations the lattices in the two crystals admit a sub-lattice of 

coincidence points. The dislocations are grouped in one or more 

families of approximately straight, parallel and equidistant 

dislocations. Misfit dislocations have been observed by various 

techniques, particularly by transmission electron microscopy, in 

low [3] and high angle [4-6] grain boundaries, mainly in cubic 

metals. In the case of low angle boundaries, the near c.s.1. 

orientation is the perfect crystal. Bollmann [2] distinguishes 

between primary and secondary dislocations; the former occur 

in low angle boundaries and the latter in (other) near c.s. 1. 

boundaries. This distinction will not be made here. 

At the exact c.s.1. orientations, particularly when the degree 

of coincidence % is low (high coincidence; ¥ is defined as the 
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reciprocal fraction of coincidence points) boundaries exist which 

are built up of low energy atom groups (‘structural units’) 

periodically repeated along the boundary [7, 8]. The corresponding 

short period boundaries have therefore a low energy and other 

special properties. The misfit dislocations introduced as a result 

of small deviations from those special or ‘‘favoured’’ orientations 

permit that in most of the boundary area the low energy atom 

groups are maintained [9]. Misfit dislocations can be regarded as 

lattice defects in the so-called DSC lattice; this is defined as the 

coarsest lattice that contains both crystal lattices (in a c.s.1. 

orientation) as sub-lattices [2]. The Burgers vectors of the (perfect) 

misfit dislocations are therefore among the DSC lattice vectors. 

These ideas are inspired by the model of Read and 

Shockley [10] for low angle boundaries. In this case, the special, 

reference orientation is the perfect crystal and the misfit dislo- 

cations have Burgers vectors which are lattice vectors. The 

dislocation content of small angle boundaries, that is, the direction 

and spacing of the dislocations in each family, can be obtained 

from the well-known Frank’s formula [10,11] for a given set of 

three independent Burgers vectors. This formula is easily 

generalized to determine the dislocation content of any grain 

boundary between two crystals which deviate slightly from a 

c.s.l. orientation [5, 12,13]. When the dislocation content is 

known, the contribution of the misfit dislocations to the boundary 

energy can be evaluated , and this may be sufficient to determine 

the variation of energy with the deviation away from a given 

c. s.1. orientation [14]. 

Dislocations with the same role of maintaining as much as 

possible low energy atomic configurations at the interface, may 

also occur at an interface between two different crystals [2, 15-21]. 

The basic ideas of the c. s. 1. model can be adapted to such general 

interfaces, the only difficulty being that c. s. 1. orientations between 

two different crystals (and in fact also between two non-cubic 

identical crystals) only occur if the lattice parameters satisfy 

particular metric relations [22]. Formally, a c.s.1. model of inter- 

faces can then be based on the following points: 

1 — Low energy interfaces should occur for particular values 

of the lattice parameters and of the parameters defining 
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the relative orientation of the two crystals, which 

correspond to a c.s.1l. relation between the two crystal 

lattices. 

2 — When the lattice parameters and/or the relative orienta- 

tion deviate from the exact c.s.1. values, interfacial 

misfit dislocations are incorporated in the interface 

structure. 

3 — The Burgers vectors of the interfacial dislocations are 

among the vectors of the DSC lattice associated with the 

reference c.s. l.. 

In this paper we derive, from the point of view of the c.s.1. 

model, the equations that give the dislocation content of a general 

interface between two crystals. To do this it is of course necessary 

to choose a definite reference c.s.l. relation between the two 

crystals or between two other crystals with different lattice 

parameters. The choice of the reference state is not unique and 

in the derivation we shall not require that the actual parameters 

(lattice and orientation) deviate slightly from those of the reference 

state. However, if the deviation is too large, the spacing between 

the dislocations will be so small to question their individuality. 

The equation derived for the total dislocation content is formally 

identical to the one first obtained by Bullough and Bilby [23] for 

a continuous distribution of surface dislocations and subsequently 

adapted for discrete dislocations at crystalline interfaces [20]. The 

advantage of the present derivation is that it clearly indicates 

the possible Burgers vectors of the misfit dislocations. The 

equation will be solved to obtain the orientation and spacing of 

the dislocations in a general interface. The solution is analogous to 

the one found by Knowles [21] but corrects an error introduced 

in his derivation. The dislocation distribution is related to a 

“dislocation content lattice’ which in turn can be related to the 

c.s.1. of the reciprocal lattices of the two crystals. The range 

of applicability of the c.s.1. model of interfaces is assessed and 

the continuity of dislocation lines in non-planar interfaces is 

proved. The particular case of grain boundaries is treated as an 

example of application. 
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2— DISTRIBUTION OF MISFIT DISLOCATIONS 

2.1 — Basic Mathematical Concepts 

We consider two crystal lattices, L and L’, and choose vector 

bases (e) = (e:, ex, es) and (e’) =(e41, e2, e’3) in each. 
When two crystals with those lattices meet at an interface, there 

is a definite relation between the two sets of vectors, which 

we write in matrix notation as 

[e]=[e] X (1) 

where [e]=[e1, e2, e;] and [e’] =[e’:, e2, e’;] are to be 

regarded as row matrices, and X is a non-singular 3 x 3 matrix. 

X defines the relative orientation of the two lattices and will 

be termed the orientation matrix. The relation defined by eq. (1) 

can be regarded in two ways. First, it defines a coincidence of 

vectors v and v’, one in each lattice: 

v=Xv (2) 

that is, a relation between the components of vy in the basis (e ) 

and those of the coincident vector v’ in the basis (e’). If 4 v {, is 

a column matrix with the e components of vy then eq. (2) is equiv- 

alent to 

{Vv ft. =X" iv te? . (3) 

The second interpretation of eq. (1) is that it transforms a vector v 

of lattice L into another vector v,, the (e) components { v } 

and {v, } of the vectors being related by 

Vv, = X""v ? {Vx fg = 0 4 vt ie . (4) 

It has been established [24] that a c.s.1l. relation between the 

two lattices (that is, the existence of coincident vectors forming 

a 3-dimensional lattice) is defined by those matrices X = C that 

are rational. As shown elsewhere [25] the c. s. l. can be determined 

by factorizing C in the form 

C=N N" (5) 
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where N and N’ are integral matrices with the least possible 

values of |det N| and |det N’|. These values are the degrees 

of coincidence = and >’ for lattices L and L’. A basis of the 

c.s.l. is 

[e] N=[e]N’ . (6) 

The DSC lattice is determined by factorizing C in the form 

C=M 1M (7) 

with the least possible values of |det M| and | det M’|, which 

in fact coincide with > and >’ [25]. A basis of the DSC is the 

set (bo ) = (bo, boe, bos ) defined by 

[b]=[e] M*=[e’] M™ . (8) 

In the following, we shall make use of the metric matrix of a 

lattice. For example, for lattice L this matrix is G = (g,;), with 

8; = e,- e;- The volume of the unit cell is (det G )i/?, Esq. (1) 

implies that 

G=x Gx (9) 

and for given G and G’ there may not be rational solutions X for 

this equation. T denotes the transposed matrix. The reciprocal 

lattice of L, for example, has a basis (e*) given by 

[e*]=[e] G* (10) 

2.2 — Formulation of the Problem 

If the orientation matrix X is not rational, we write X in 

the form 

x=DC (11) 

where C is a rational matrix defining a c.s.1. relation between 

lattice L and another lattice Lj with basis 

[eg] = [e’] D : (12) 
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Li, deviates slightly from lattice L’ and is in a c.s.1. relation 

with lattice L: 

[fe] = [eg]Cc . (13) 

More generally, we could write X in the form X = D’CD™, by 

considering two auxiliary lattices ,[e,]=[e] D and [e]= 

=[e’] D’, associated respectively with L and L’, in a c.s.1. 

relation: [e,] = [e,] C. This is the type of decomposition used 

by Christian [20]. However, for a given X and a chosen C, it 

is always possible to write X in the simpler form eq. (11), which we 

shall use in the following analysis. There are, of course, infinite 

choices for the matrices C and D satisfying eq. (11). As a general 

rule, the physically best choice should be the one for which the 

degrees of coincidence (> and 3’) defined by C are small and 

the deviation defined by D is small (that is, D =I, I being the 

identity matrix). For a given choice of C, we find a basis 

(bo) = (bo, boz, bos) of the DSC lattice in the way described 
above (eqs. (7) and (8)) and choose three arbitrary non-coplanar 

vectors (b) =(b:i, bo, bs) of this lattice. We shall find the 

dislocation content of an interface with unit normal n, assuming 

that the dislocations have Burgers vectors bi, bo, bs. 

We take lattice L as fixed and consider a reference state 

with lattices L and Lj in the c.s.1. orientation, C. As in the 
derivation of Frank’s formula [11] we take an arbitrary vector y in 

the plane of the interface between L and L4. This plane has 
a definite orientation in lattice L, so that no ambiguity occurs. 

When L, is transformed into L’ by means of the operator D, the 

vector v is transformed into D~' y (eq. 4). We now state that the 

difference between the two vectors v and D~'y is the sum, B, 
of the Burgers vectors of all dislocations cut by v: 

B=(I-D"*)¥v . (14) 

This is the basic equation of the formal theories of surface and 

interface dislocations [20, 23]. In the following we shall find the 

solution of this equation in order to determine the detailed 

dislocation content of the interface. The method of solution is 

similar to that of Knowles [21] but a correction is made to an 

error in his derivation, which is in fact valid only when the 

reference lattice is cubic (see below). 
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The interface will in general contain several families of 

dislocations, each family having the same Burgers vector. An 

argument similar to the one used by Read [11] would show that 

the dislocations of a given Burgers vector are parallel and equally 

spaced. Adopting the procedure of Sargent and Purdy [18] we 

therefore define vectors N,, perpendicular to the family of 

dislocations b; and such that the spacing d, between the dislocations 

in the family is 

a=] Rr (15) 
The number of dislocations b, cut by v is v-N, and their 

contribution to the total Burgers vector B is (v-N,) b,. Therefore 

(I-D“*) v= (v-Ni) by . (16) 

This relation holds for any vy such that 

ven=0.. (17) 

2.3 — Determination of the Dislocation Content 

To solve eqs. (16) and (17) we introduce the reciprocal 

vectors b* of the b;, defined by (cf. eq. 10) 

[b*] = [b] G,* (18) 

where G, is the metric matrix of the b,;. The vectors b* belong 

to the reciprocal lattice of the (b,), with basis (b*) given by 

(cf. eqs. (9) and (10)) 

-1_7T 
[bs] = [bh]MG M . (19) 

The lattice (b*) is the c.s.1l. of the reciprocal lattices of (e) 

and (e’) (e.g. [25]). Taking the scalar product of eq. (16) by 

b*, we obtain 

b*¥-(I—-D-') v=v-N, . (20) 
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Next we introduce the adjoint operator of (I—D~') which is 

represented in the basis (e) by the matrix 

Q=G"(I-D")'G . (21) 

This allows us to write eq. (20) in the form 

(N;-Qb¥) -v=0 . (22) 

The vector in brackets in then parallel to n, and since N, is 

perpendicular to n, we finally obtain 

Ni = Qbi—-(Qbi +n) n (23) 

with Q defined by eq. (21). The vector N, is the projection of Q b# 

in the plane of the boundary. In matrix notation, eq. (23) is 

written as 

{N+} =Qibtt—{n} (GQLbEH{ n} (24) 
where { | denotes a column matrix. This derivation leads to the 

same equations obtained by Knowles [21] except for the presence 

of the metric matrix G in the definition of Q. In fact, Knowles’ 

result is only valid when G=I. This becomes apparent from 

inspection of eq. (17) in his paper. 

The general procedure to obtain the orientation and spacing 

of misfit dislocations can be summarized in the following steps: 

1 — Decomposition of the orientation matrix X (eq. 11). 

2 — Determination of the DSC lattice associated with C 

(eq. 8): vector basis (b, ). 

3 — Determination of the matrix Q (eq. 21) and vectors Q b* 

[b*] Q=[b,] MG MQ=[e]G MQ. (25) 
To each Burgers vector b we may therefore associate a 

vector Q b*. 

4 — Choice of three non-coplanar Burgers vectors b in the 

lattice (b, ). 
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5 — The direction and spacing of the dislocations with b is 

determined from the projection of the corresponding Q b* 

in the plane of the interface: the dislocations are perpen- 

dicular to the projected vector and their reciprocal spacing 

is the modulus of that vector (Fig. 1). 

IZ
 

  

(a) (b) 

Fig. 1— a) _ The directions and spacing of the misfit dislocations is determined 

by the projection N, of the three vectors Qb* in the plane of the interface. 

b) Effect of orientation of the interface on the distribution of dislocations 

defined by vectors N. 

If the rank of Q is three, the vectors Q b* form a 3-dimensional 

lattice with the basis (25). This lattice can be termed the dislocation 

content lattice. Three families of dislocations with any non-coplanar 

b’s can accommodate the deviation from the c.s.1., for any 

orientation of the interface (Fig. 1). When a particular near c. s. 1. 

relation and a particular interface orientation are considered, it 

is clear that larger Burgers vectors, b, correspond to larger Q b* 

vectors and therefore to larger dislocation spacings. However, if 

the energy per unit length of the dislocations increases more than 

linearly with b, the energy of the interface should increase as b 

Portgal. Phys. — Vol. 15, fasc. 3-4, pp. 143-156, 1984 151



  

M. A. ForTES — Misfit dislocations in crystalline interfaces 

increases. Small Burgers vectors are therefore preferred. This is 

a general tendency, but in particular cases (e.g. for particular 

orientations of the interface) larger Burgers vectors may be 

energetically favourable. Various criteria that can be used to 

choose the more convenient matrix D have been discussed by 

Knowles [19,21]. As a guide to decide the more favourable near 

c.s.l. relation, that is, the one for which the interface structure 

has lower energy, we can use the following simple argument. 

From eq. (25) and the relation between metric matrices, eq. (9), 

it is easily concluded that the volume of the unit cell of the Q b* 

vectors is ¥|det Q|/, where © is the volume of the unit cell 

of lattice L. This quantity is a measure of the average dislocation 

density at interfaces for that particular reference c.s.1. relation. 

Therefore, the best choice of the decomposition (eq. 11) of the 

orientation matrix should be the one for which =| det Q| has the 
smallest value. Broadly, low & values and D ~ I should be favoured. 

However, the energy of the interface is not a simple function of 

the dislocation density, so that the rule has to be regarded carefully. 

Finally, the above result shows that as the deviation from a given 

c. s. 1. relation increases, or the value of & increases, the average 

dislocation spacing (3 | det Q| /)~1/* decreases; the c. s. 1. model 

fails when %|det Q| is of the order of unity. 

If the rank of Q is two, the vectors Q b* are all in the same 

plane, but do not form a lattice except in special cases (see an 

example below). If there is a vector b* such that Q b* = 0 (and 

this may be possible if the rank of Q is two), interfaces of any 

orientation can be described with just two families of dislocations. 

Similar considerations apply when the rank of Q is one. 

2.4 — Continuity of Dislocations Lines 

It is interesting to point out that eq. (23) ensures the 

physically necessary continuity of the dislocation lines, of a given 

Burgers vector, as the plane of the interface changes (Fig. 2). 

This question is important in relation to interface faceting. 

Consider two planes with unit normals n and pn’. Their intersection 

is parallel to n X n’. The orientation and spacing of dislocations 

in each plane is defined by N, and Nj for each Burgers vector hb, . 
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It is assumed that the same Burgers vectors appear in both planes, 

although this is not strictly necessary. Continuity of the dislocations 

b; implies that 

d,;/cose = dj/cos0’ (26) 

where © and 0’ are defined in Fig. 2. Eq. (26) is equivalent to 

IN,- (nXn’){ = |Ni-. Cn Xn’)|. (27) 

  

Fig. 2— The dislocations of a given Burgers vector are continuous when the 

plane of the interface changes from the orientation n to n’. 

It is immediately seen from eq. (23), that this relation holds for 

any n, n’. The dislocations are therefore continuous, even 

when the plane of the interface changes abruptly. 

3 — APPLICATION TO GRAIN BOUNDARIES 

The orientation matrix X is in this case a rotation matrix. 

Then D is also a rotation matrix and the rank of Q is necessarily 

two. The Q b* vectors are all in the same plane. If the rotation 
axis for D is defined by the unit vector u, the plane of the Q b* 
vectors is perpendicular to u. When the rotation angle 0 in D is 

small, the matrix Q is equivalent to the operation defined by 

Q=0u x (28) 

where X denotes the cross product. 
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The Qb* vectors form a lattice in the plane u if and only 

if u is parallel to a lattice direction and perpendicular to a lattice 

plane of the two lattices in the c.s.l. orientation. This is 

immediately seen when Q has the form (28), since in this case the 

operation Q is directly related to the projection on the plane u. 

Those conditions are in general only met in cubic crystals. More 

generally, the Q b* vectors may have their extremities on a family 

of parallel equidistant straight lines or they may fill the whole 

plane when placed at a common origin. 

When u is perpendicular to a lattice plane of the two crystal 

lattices in the c.s.1. orientation, there is a reciprocal b* parallel 

to u and for this Q b* = 0. In this case all grain boundaries may 

contain just two families of dislocations with Burgers vectors in 

the plane u. 

As for a general crystalline interface, the actual dislocation 

content of a grain boundary can only be decided, among all possible 

choices of the reference c. s. 1. and the corresponding combinations 

of Burgers vectors, after calculating the energy of the boundary 

for each set of Burgers vectors. The variation of the energy of the 

boundary with its orientation can then be determined, and the so 

called {- plot constructed. Special orientations, possibly associated 

with cusps in the ¥- plot, will occur when one family of dislocations 

is missing, relative to neighbouring orientations. The special 

orientations are those for which the boundary plane is normal 

to a Qb* vector, which in turn implies that the deviation from 

the c.s.l. orientation is a pure tilt rotation. 

4 — DISCUSSION 

Although misfit dislocations have been observed in a variety 

of interfaces, it is not certain whether they are a general feature 

of crystalline interfaces. The formal theory outlined in this paper 

plausibly admits that they should occur at interfaces which deviate 

slightly from special or favoured orientations containing a high 

density of coincidence points. The misfit dislocations can be 

regarded as line defects in the DSC lattice but this lattice can 

only be defined for c.s.1l. orientations. In most cases, such 

orientations only occur if we allow for changes in the metric of 

the two crystals. However, it is difficult to physically legitimate 
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these changes since they interfere with the stability of the crystals; 
the favoured interfaces are then purely conceptual. 

When coincidence of lattice points does not occur, it is still 

possible to define a coincidence of equivalent points in the two 

crystal lattices [2]. These are the 0 - points and form a translation 

lattice — the 0 - lattice. Bolmann [2] suggested that special interfaces 

are those that contain a high density of 0 - points, but the physical 

basis for this is weak: the 0 - lattice theory is “too” geometrical. 

Nevertheless, the concept of favoured or special interfaces 

of low energy is useful and can possibly be generalized to include 

all those interfaces correlated with cusps in the energy plots 
(or ¥- plots) as a function of the orientation of the interface for 
any relative orientation of the two crystals. A difficulty arises 
in such cases, in that there is not, as there is in the case of c.s. 1. 
interfaces, an obvious crystallographic “state” in relation to which 
dislocations can be defined, although they could still be regarded 
as line singularities in the atomic configuration at the interface. 

The formal theory discussed in this paper and the equations 
derived allow a correct interpretation of the structure of interfaces 

in simples cases, but it is unlikely that their applicability is general. 

Besides, the theory does not identify unambiguously the Burgers 
vectors of the intervening dislocations. The alternative approach 

to the structure of interfaces is the direct calculation by computer 

of the atomic positions, using adequate interatomic potentials. 

A considerable amount of work along this line has been undertaken 

in recent years for grain boundaries [26,27]. But, as expected, 
the approach has little predictive value and the c.s.1. theory of 

interfaces remains the most rational and simple (although not 
entirely satisfactory) framework to discuss the structure and 
properties of interfaces. 
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