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LES TRANSITIONS DE CONNECTIVITE (*) 

P. G. DE GENNES 
Collége de France, 75231 Paris Cedex 05 

(Received 19 September 1983) 

Beaucoup de structures physiques peuvent étre décrites comme 

formées d’“iles” aléatoires. Dans certaines conditions parmi ces 

jles émerge un ‘‘continent’”” macroscopique. Cette idée a été percue 

en premier par Hammersley [1]. L’attention s’est concentrée 

d’abord sur le cas de réseaux périodiques sur lesquels une fraction 

p des sites (ou des liens) est active, le reste (1-p) étant inactive, 

les différents sites (ou liens) étant non corrélés. L’apparition d’un 

“continent” a été baptisée transition de percolation [1]. 

On connait maintenant assez bien la statistique géométrique 

des iles, ou amas de percolation [2] et la relation entre percolation 

et transitions de phases [3]. Par contre, les propriétés de transport 

sur des amas de percolation commencent seulement a se 

clarifier [4]. Nous ne savons pas encore si les singularités du 

transport (prés du seuil de percolation) sont directement déductibles 

des données sur la géométrie [5]. 

Malgré ces lacunes, nous disposons actuellement de données 

numériques assez détaillées sur les transitions de percolation. 

Elles ont trouvé des applications variées en physique des solides. 

Par exemple, on peut réaliser des systemes magnétiques dilués, ov 

une fraction p de sites est occupée par des atomes A portant 

des spins, la fraction 1-p portant des atomes B diamagnétiques. 

Le cas le plus simple correspond par exemple 4 des couplages 

ferromagnétiques (Fig. 1) entre atomes A premiers voisins. Alors, 

a basse température, tous les atomes A d’une méme ile ont leurs 

moments paralléles. Mais deux iles distinctes ont des moments 

(*) Abridged version of an invited talk at the First Iberian Symposium 

on Condensed Matter Physics (Lisboa, 19-22 September 1983). 
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P. G. DE GENNES — Les transitions de connectivité 

incorrélés. Lorsqu’on a seulement des iles (p < p,) la moitié de 
celles-ci ont un moment vers le haut, l’autre moitié vers le bas, 

et au total il n’y a pas d’aimantation macroscopique. Par contre, 

pour p>p,, il apparait un continent. Les moments des iles se 

compensent encore mais celui du continent n’est pas compensé: 

le ferromagnétisme apparait a p = p,. Cette confluence (a p = p, 

et T= 0) de deux transitions, ’une géométrique (percolation) 

lautre physique (ferromagnétisme) a suscité un assez vaste effort 

théorique et expérimental [6]. 
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Fig. 1— Atomes A (points noirs) répartis au hasard parmi des atomes B 

(points blancs) dans un alliage substitutionnel. Les atomes A forment des ‘‘iles” 

(connectées par des lignes noires). Tous les moments magnétiques des atomes A 

(marqués par des fléches) sont paralléles a l’intérieur d’une méme ile. 

Dans la présente discussion, on insistera plut6t sur des 

généralisations de la percolation. Il faut noter d’abord que le 

remplacement du réseau de base périodique par un réseau 

statistique (ou, plus concrétement, d’un cristal par un verre) ne 

modifie pas profondément la statistique des iles. Par contre, 

certaines restrictions physiques sont importantes: nous nous 

limiterons toujours 4 des systémes: a) qui sont mascroscopique- 

ment homogeénes; b) pour lesquels les liaisons qui définissent la 
x 

connectivité sont a portée finie. Ces hypothéses sont souvent 
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adéquates en physique de la matiére condensée. Par contre, dans 

les sciences humaines, ces conditions sont souvent violées. Par 

exemple, si nous pensons 4 |’échange d’informations entre individus, 

il se fait en partie de bouche 4 oreille (liaisons 4 portée finie) 

mais il se fait aussi par télécommunications (liaisons non locales). 

Méme avec ces restrictions, on trouve en physique de nom- 

breuses transitions iles-continents qui ressemblent peut-étre quali- 

tativement a la percolation, quoique la statistique détaillée des 

iles puisse étre différente. Nous les appelons transitions de 

connectivité. Dans le langage des transitions de phase, ces 

transitions peuvent éventuellement introduire de nouvelles classes 

d’universalité (montrer des exposants critiques différents de ceux 

de la percolation). En voici quelques exemples. 

1— LIQUIDES EN MILIEU POREUX 

a) Si l’on injecte du mercure dans un verre poreux (Fig. 2) 

on constate que lorsque la pression d’injection dépasse un certain 

      

  

MERCURE~ 
cowie 

  
Fig. 2— Injection de mercure (parties hachurées) dans un verre poreux. Les 

pores larges sont pénétrés facilement, les pores étroits ne sont pénétrés que 

lorsque la pression d’injection est forte. 
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P. G. DE GENNES — Les transitions de connectivité 

seuil, le mercure pénétre dans la masse du spécimen: il s’est fait 

un ‘‘continent’”” de mercure, et le matériau injecté devient 

conducteur du courant électrique. Dans ce cas relativement simple, 

il y a forte présomption que l’on ait exactement un comportement 

de percolation. 

b) Passons a un cas plus complexe, mais important: celui 

d’un systéme gaz + pétrole dans une roche. Le gaz sous pression 

peut expulser le pétrole, et joue un rédle un peu analogue au 

mercure de l’exemple (a). Mais il y a une différence: dans le 

cas (a), le mercure remplissait des pores vides. Ici, le gaz chasse 

un liquide (le pétrole). Ceci peut conduire a une _ situation 

nouvelle (Fig. 3). Si une ‘ile’ de pétrole est entiérement entourée 

par du gaz, elle ne pourra pas étre évacuée (alors qu’une ile vide 

pouvait toujours étre envahie par le mercure). On attend encore 

une transition de connectivité (audela de laquelle le gaz forme 

  

  
Fig. 3 — Déplacement du pétrole (régions pointillées) par du gaz (régions hachu- 

rées) dans une roche poreuse. Noter la région I (ile de pétrole entourée de 

gaz) qui ne peut plus étre éliminée. 
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un “continent’), mais dans certains cas (‘), elle différe de la 

percolation. 

c) Un exemple encore plus complexe nous est fourni par 

une roche poreuse imprégnée de pétrole, ot |’on essaye de déplacer 

le pétrole en injectant de l’eau. Alors que (b) correspond au mode 

normal de l’exploitation pétroliére, le cas (c) est celui de la 

récupération assistée, qui prend une importance croissante de nos 

jours. Par rapport aux discussions précédentes, il y a (au moins) 

deux complications nouvelles: 

(i) — souvent, l’eau tend a mouiller complétement la surface 

de la roche: dans un pore, une région huile peut étre entourée par 

un film d’eau; la distinction entre pores remplis d’huile et pores 

remplis d’eau ne tient plus. Ce cas est trés mal compris 

actuellement; 

(ii) — méme lorsque la complication (i) n’apparait pas 

(c’est-a-dire quand l’angle de contact eau/huile 4 la surface du 

solide reste fini), la géométrie est plus riche avec deux fluides: 

quand on augmente la fraction d’eau injectée f, on traverse 

deux transitions de connectivité. Au-dela d’une certaine fraction f, 

(environ 20%), on réalise un “continent d’eau’, et l’eau peut 

alors se déplacer a grande échelle. Au-dela d’une deuxiéme 

fraction f, (environ 80%), on voit disparaitre le “continent de 

pétrole’”’: tout le pétrole est sous forme d’iles, et est beaucoup plus 

difficile a déplacer. 

2—LA FORMATION DES GELS 

La Fig. 4 décrit qualitativement un gel—un réseau lache de 

macromolécules en solution, connectées par des ponts. On peut 

former les ponts soit par réaction chimique, soit par des procédés 

physiques (microcristaux, hélices 4 plusieurs brins, etc.). Partons 

d’une situation ot les ponts sont trés rares: alors on a des chaines 

déconnectées flottant dans un solvent, et le milieu est un liquide, 

ou “‘sol’’. Mais si nous augmentons le nombre de ponts, nous 

atteignons un seuil de connectivité: un “‘continent’’ apparait — c’est- 

a-dire un filet macromoléculaire lache, mais présent dans tout le 

récipient: le milieu est maintenant un solide fragile: un ‘gel’. 

@) En particulier 4 deux dimensions. 
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(Les gelées de coing en sont un bon exemple: elles sont formées 

par pontage de longues chaines de sucres, les pectines). La 

transition sol <> gel est connue depuis trés longtemps, mais il 

y a moins de dix ans que sa relation avec les transitions de 

connectivité est appréciée. Les expériences sont ici surtout 

GEL 

  
  

Fig, 4 —L’état sol et |’état gel. (a) Dans le sol, les chaines macromoléculaires 

sont légéerement pontées (les ponts sont représentés par des points noirs) mais 

elles forment des iles finies. (b) Dans le gel, a plus fort taux de pontage, il 

apparait un ‘“‘continent” ponté. 

mécaniques (rigidité du gel ou viscosité du sol). Elles montrent 

qu’il n’existe pas un type de transition sol-gel, mais plusieurs 

(selon la cinétique de pontage, la longueur des  chaines 

initiales, etc.). 

3— LES ECOULEMENTS DES SUSPENSIONS 

Dans beaucoup de processus industriels, il est important de 

fluidiser une poudre solide, en la mettant en suspension soit dans 

un gaz, soit dans un liquide comme de I’eau. Le plus souvent, les 

grains de la poudre sont relativement gros (observables au 

6 Portgal. Phys. — Vol. 15, fase. 1-2, pp. 1-7, 1984



P. G. pE GENNES — Les transitions de connectivité 

microscope optique) et leurs mouvements sont alors entiérement 

guidés par l’écoulement global du fluide. A l’heure actuelle, nous 

ne comprenons pas encore ces écoulements de suspensions, au 

moins dans le cas (essentiel) ot la fraction du volume ¢ occupée 

par les grains est forte (supérieure 4 15 %). Pour les suspensions 

dans l’eau en écoulement de cisaillement simple, il existe 

probablement une transition de connectivité remarquable: pour 

® inferieur 4 une certaine valeur critique ¢,, la suspension est 
fluide, mais pour ¢ supérieur a ¢,, elle se comporterait plutét 

comme une roche poreuse. Mais les mécanismes sous-jacents ne 

sont pas clairement établis 4 ce jour [7]. 

En conclusion, il est clair que l’idée des transitions de con- 

nectivité a fourni un schéma directeur, et unificateur, pour des 

phénoménes apparemments trés différents— pris un peu partout 

dans les sciences physiques et chimiques, et dans leurs applications 

industrielles. Il est probable que cette idée diffusera aussi vers 

les sciences humaines. Mais, comme nous l’avons déja dit, les 

réseaux concernés sont ici trés différents, et il serait dangereux 

de vouloir plaquer trop rapidement les schémas de la percolation 

sur des problémes trop complexes. 
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FRUSTRATED SPIN SYSTEMS 

AYSE ERZAN 

Laboratério de Fisica, Faculdade de Ciéncias 

Universidade do Porto, 4000 Porto, Portugal 

(Received 10 Octoher 1983) 

ABSTRACT — This paper aims to review mostly rigorous results on 

frustrated Ising systems and present a unified approach to the statistical 

mechanics of frustrated systems. The formalism is presented in a general 

enough manner to include q-state Potts models wherever this extension was 

possible. 

I — INTRODUCTION 

The present review was motivated by two lectures I gave at 

the Laboratorio de Fisica, Faculdade de Ciéncias, in Porto. It is 

intended as a_ tutorial introduction to the subject, with a 

pedestrian’s approach to the connection with gauge theories. The 

interested reader is encouraged to go to other existing reviews in 

the field, notably that by Toulouse (1980), and to the seminal 

article of Fradkin et al. (1978). 

Although in this review I will confine myself to spin models, 

the usefulness of the concept of frustration is certainly not limited 

to spin models. The ideas of frustrations and frustration lines have 

been extended by various authors to continuum models (see for 

example Dzyaloshinskii and Volovik 1980, and the review article 

by Halperin 1981 as well as the more recent work of Rivier). 

I have, moreover, both for the sake of brevity and unity of 

presentation, not included models with continuous symmetries, 

although a few references have found their way in. (This is a big 

Portgal. Phys. — Vol. 15, fasc. 1-2, pp. 9-54, 1984 9



  
A. ERZAN — Frustrated spin systems 

shortcoming, as some of the most interesting results, analogies 

and open questions are to be found precisely in these systems). 

Above all, I do not pretend to make an exhaustive review of the 

subject, but hope to have included the highlights of the progress 

in the field, enough to indicate problems and loose ends. At the 

same time I hope I have been able to introduce the reader to some 

useful techniques in dealing with frustrated systems. 

The paper is organized as follows. In Section II, I will give 

an intuitive definition of frustration and then proceed to review 

the results on ground state properties, the existence or nonexistence 

of phase transitions and their universality class, and the behaviour 

of the correlation functions, in periodically frustrated and, where 

available, on randomly frustrated Ising models. (The fully 

frustrated (ff) models are a special case of the former). This 

is not meant to be a review of the vast literature existing on spin 

glasses (SG), and only a few papers dealing with randomly 

frustrated systems are touched upon, the selection having been 

made on the basis of emphasis, namely, on the direct interrelation 

between the behaviour of the system and that of the distribution 

of frustrations. 

In Section III, I introduce the concept of gauge variables and 

gauge transformations. The invariance of the partition function 

under these transformations is derived. The continuity between 

annealed and quenched averages is demonstrated. 

In Section IV, the duality transformation and disorder variables 

are introduced. The interrelations under duality transformations, 

between disorder-disorder correlation functions in two dimensions 

(2d) (gauge invariant correlation functions in three dimensions 

(3d) ) and the defects in the ordered spin system are displayed. 

The relevance of these correlation functions to the probability 

distributions of configurations of frustrations (and thus quenched 

averages) is shown. Finally, phase transitions in the frustration 

system as a function of the concentration of antiferromagnetic 

(AFM ) of ferromagnetic (FM ) bonds are considered. 

Where possible, the material in Sections III and IV has been 

presented with enough generality to cover systems with Zy type 

symmetries, and some consequences of the generalization to Potts 

systems of analogous results on the Ising model are indicated. 

10 Portgal. Phys. — Vol. 15, fasc. 1-2, pp. 9-54, 1984
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II — FRUSTRATED SYSTEMS 

Consider a system of spin s, located on the sites, i, of a 

lattice, with interactions Jj; on the bonds. The Hamiltonian is 
given by 

H=-— = Jyjf(s;,sj)= = Ey (2.1) 
(ij) (ij) 

where the sum is over all pairs i, j. The most intuitive definition 

of frustration is to say that the system is frustrated, if not all E,, 
may take their minimum values simultaneously, for any config- 

uration of the spins s,. Observe that this is a property of the 
set of interactions J,; on the bonds and the functions f(s;, sj) ; 
however it does not depend on a particular set of values of the 

functions f(s;, s;) or s;. From now on we will refer to the 
situation were E,; takes its minimum value as ‘the bond (i, j) 

being satisfied’. (Otherwise, we shall say it is broken. Using 

‘frustrated’ in this context gives rise to a lot of confusion). 

Let us illustrate. The simplest such spin model is the Ising 

model, where 

It is obvious that on a one dimensional chain with only nearest 

neighbor interactions (no overlapping bonds) and open ends, it 

is always possible for the s,; to take on a set of values which will 
satisfy any given set of J;;. However, as soon as we have a 
closed loop of bonds, e.g. a triangle with the set J,; of bonds on 
the edges as shown in Fig. la, b the problem is no longer trivial. 

In fact both of these systems are frustrated. It can easily be 

checked that any such loop with an odd number of bonds equal 

to -J, and the rest equal to J, is frustrated. Moreover, any 

lattice in d dimensions, incorporating such loops will also be frus- 

trated. 

Toulouse (1977) has defined the frustration function for the 

Ising model to be given by 

op = SBN (a Jij) (2.3) 

where the product is over all the bonds on a loop p. This function 

is positive if the loop is not frustrated, and negative if it is. If this 

Portgal. Phys. — Vol. 15, fasc. 1-2, pp. 9-54, 1984 ll
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loop is the smallest loop that can be constructed on the given 

lattice, it will be called a plaquette. If the function 4, associated 

with some plaquette is negative, that plaquette will be said to be 
frustrated, or is a ‘frustration’. 

+ J +J 

  

  
  

(a) (b) 

  

  

  

  
(cy) (d) 

Fig. 1—(a), (b) Simple frustrated plaquettes, (c) possible configurations of 

frustrations in two dimensions, (d) smallest possible ‘tube’ of frustrations in 

three dimensions. Dark lines are AFM. Frustrations are marked with an ‘x’. 

The distribution of frustrations on a lattice in d dimensions 

obeys certain topological constraints. As can be seen from Fig. Ic, 

12 Portgal. Phys. — Vol. 15, fase. 1-2, pp. 9-54, 1984



  

A. ERZAN — Frustrated spin systems 

in two dimensions, any finite number of AFM bonds give rise 

only to pairs of frustrations. A single frustration can only be 

created with an infinite ‘ladder’ of AFM bonds going out to the 

edge of the lattice. In three dimensions, only a closed ‘tube’ of 

frustrated plaquettes may exist, the smallest possible such ‘tube’, 

surrounding a single AFM bond is shown in Fig. 1d (Fradkin et al. 

1978). One can see that in the ordered phase spins would tend 

to align parallel, except along the faults, or defects, created by 

the AFM bonds, with the frustrations in two dimensions acting 

as the sources and sinks of the defect line. In three dimensions, 

an arbitrary loop of frustrated plaquettes is created by flipping 

all the spins incident on some surface bounded by this loop. 

The concept of frustration has been generalized to other types 

of spin systems. The frustrated x - y model has been treated by 

Villain (1977b), Fradkin et al. (1978), José (1979), and more 

recently by Dzyaloshinskii and Obukov (1982). The latter have 

also treated a frustrated Heisenberg model. The extension to 

continuous spins has been provided by Herz (1978). In this review, 

I will, as already stated, stay for the most part with the Ising 

model. In section III, and IV, a more general treatment will also 

include the Potts model. 

The usefulness of this quantity can be illustrated as follows: 

There are many conceivable ways in which bond randomness 

may be introduced into a Hamiltonian like Eq. (2.1), allowing 

for J,; to take on both positive and negative values. (For simplicity, 

let us for the moment assume that the magnitude of the coupling 

constant stays the same). However it turns out that the models 

obtained via some of these schemes may be transformed, by a 

suitable redefinition of the spins, into uniform ferromagnetic 

models, and thus contain a ‘hidden order parameter’, namely the 

magnetization of the related ferromagnetic model. The partition 

functions and the free energies of the original and transformed 

models are of course the same, and so are the singularities 

encountered at the transition temperature, if there is one. The 

classical example of this phenomenon is the ‘Mattis model’ 

(Mattis 1976), where 

Jij = J oj; 9; ’ o=t1 

Portgal. Phys. — Vol. 15, fasc. 1-2, pp. 9-54, 1984 13
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and o;, 0; are independent random variables. For Ising spin s, 
one may define 

7% = S; Cj 

so that the partition function 

Z= xX exp[B J & a; oj § 8;] 
18,$ (ij) 

reduces identically to that of the ferromagnetic Ising model: 

Z= > exp[sp J & 7% 75] 
(ij) 

Tj 

where £ is the inverse temperature in units of the Boltzmann 

constant, as usual. Note that although <s,;>=0 for all 
temperatures, for an even distribution of the o,, <7; > > 0 for 

T<T,, where T, is the critical temperature of the ferromagnetic 
model. (See Section III for a more general discussion of this type 

of transformation). Upon inspecting the original model we see that 

it is completely unfrustrated! For any closed loop on the lattice, 

j 

where the product is over all pairs i, j lying on the loop c. 

An inspection of the ground state of the system will show that 

there is in fact a unique way (with the overall degeneracy of 2) of 

choosing the spins s; such that all the bonds J;;= J o; oj; are 
satisfied. This ground state is precisely the ferromagnetic ground 

state in the variables 7;. In section III we will see that a system 
with frustrations cannot be transformed into an unfrustrated system 

by such a redefinition of the spins. We conclude that frustration 

is a necessary and irreducible feature of spin glass models. 

Random and Periodically Frustrated Systems 

An Ising spin glass model where the exchange interactions 

are distributed independently of each other with some probability 

P(J), where P(J) includes negative couplings, will give rise 

14 Portgal. Phys. — Vol. 15, fasc. 1-2, pp. 9-54, 1984
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to a lattice with a random distribution of frustrations. (In fact, 

on a square lattice with an even distribution of +, — bonds, 

exactly half the plaquettes will be frustrated on the average). 

One may, on the other hand, construct periodic arrays of 

frustated plaquettes, or systems where each plaquette is frustrated, 

namely, fully frustrated systems. (See Fig. 2 for the fully frustrated 

  
  

  

  
PAST / 
LLAADLV 
LIVV/V/\ 

(a) (b) 

  
  

            
  

Fig. 2—(a) Segment of the triangular lattice. Fully frustrated with all AFM 

interactions, this lattice corresponds to the fcc lattice in three dimensions, and 

generalizations thereof in higher dimensionality, (Alexander and Pincus 1980). 

(b) The Odd Model (FFSI) in two dimensions. This model can also be 

generalized to the fully frustrated hypercubic lattice in d dimensions. 

(Derrida et al. 1979, Villain 1977 a). 

lattices to which we will most frequently refer). Since the periodic 

systems are easier to treat, and in fact in two dimensions can be 

solved exactly (Ising, Potts) a lot of effort has gone into deter- 

mining their properties. (See Fig. 3 and the references given 

there). Moreover, by considering periodic strips in 2-d, within 

each of which the distribution of frustrated layers might be 

random, and then letting the width of these strips go to infinity, 

certain results may be obtained on systems with translational 

invariance in one direction and complete randomness on the other. 

(Hoever et al. 1981, Kardar and Berker 1982). I shall try to 

review these results here from the point of view of ground state 

properties, the existence or nonexistence of a phase transition, 

the nature of the low temperature or zero temperature phase and 

the behaviour of the correlation functions. 
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Ground State Entropy 

One consequence of frustration is the increase in the ground 

state degeneracy of the system. To illustrate: in Fig. 1, had all 

the bonds been equal to + J, the system would have had a 

unique ground state (all spins aligned), with the sole degeneracy 

associated with the overall (+) symmetry of the Hamiltonian. 

However, the frustrated system has an additional degeneracy 

associated with the breaking of a particular bond, e.g., a bond on 

any edge of the triange may be broken, to yield the same ground 

state energy, —J. On a full lattice the effect is even more 

strikingly illustrated (Fig. 4). 

  

  

            
Fig. 4— The light bonds are FM, dark bonds AFM. The plaquettes marked 

with an ‘x’ are frustrated. The central spin indicated by a dark dot is effectively 

decoupled from the rest of the system, contributing a degeneracy of 2 to the 

ground state. In other words, the ground state is degenerate with respect to 

the breaking of the bonds J, and J, or J, and J,. 

In an array, random or ordered, of frustrated plaquettes, 

there may be macroscopically many such spins, giving rise to a 

finite ground state entropy per spin (Binder 1980). Moreover, 
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there may be not only such single spins, but many-spin clusters 

under whose reversal the ground state entropy is invariant, giving 

rise to the cluster picture of spin glasses (Binder 1980, Miyashita 

and Suzuki 1981, Smith 1975, Soukoulis and Levin 1977), where 

one considers a system of uncoupled or loosely interacting clusters 

of spins who interact strongly within themselves. There is an 

interplay between dimensionality and ground state entropy that 

is remarkable; viz., not even all fully frustrated systems have 

finite ground state entropy (GSE) per spin. Both the triangular 

Ising AFM (Wannier 1950, Alexander and Pincus 1980) and the 

odd model of Villain (Villain 1977) have finite GSE, and no 

transition at finite temperatures. However their three dimensional 

counterparts, namely the Ising AFM on the fcc lattice and the 

FFSI in 3-d, have, respectively, ground state degeneracies of the 

order of 2N*”* (Danielian 1961) and 2N*/* (Chui et al. 1982) and 
thus zero GSE per spin. These models are thought to have, 

respectively, first order (Phani et al., 1979) and second order 

(Chui et al. 1982) transitions to an ordered low temperature 

phase (*). 

Although it is tempting to already try and draw conclusions 

with respect to the low temperature behaviour (existence or 

nonexistence of a phase transition, nature of the low temperature 

phase, etc.) from the existence or nonexistence of a finite rest 

entropy, it has been demonstrated (Hoever et al. 198la) that 

this relationship is rather subtle. In particular, the existence of a 

finite rest entropy may or may not be accompanied by the absence 
or presence of a phase transition to an ordered phase at a finite 

temperature (see also Wolff, Hoever and Zittartz 1981). 

Hoever et al. (198la) have made the following conjecture: 

‘If all of the ground states (in the ensemble of ground states for 

the system) can be obtained one from the other by a succession 

of purely local transformations on the spins (s—>—s), then the 

global symmetry of the Hamiltonian (all s+-—s, uniformly ) 

cannot be broken, i.e., there cannot be a phase transition to a 

phase with broken symmetry’. However, as they already point out, 

() It has been claimed by Villain et al. (1980) that the AFM fcc Ising 

Model has a re-entrant paramagnetic phase at T—0O. The results of Phani 

et al. (1979) are from Monte Carlo simulations. See also Binder (1980b). 
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the converse is not true, i.e., in the case where one needs to make 

some ‘global’ transformation to go from one gound state to another 

(in the sense that you have to flip over certain sets of ‘rigid 

spins’ (André et al. 1979) simultaneously) no decisive statement 

can be made. What makes the field so challenging is that most 

systems of interest happen to fall into this category! (see Fig. 5 

J 
  

s24 

  

Fig. 5—,As may be easily checked, even the extremely simple system of a 

triangular strip as shown in the figure, with Ising spins and AFM bonds, 

has sets of ground states which may be obtained one from the other by 

purely local transformations, as well as those that differ by ‘global’ 

transformations. This system has no phase transition even at zero 

temperature (de Nunes 1983). 

and caption). Monte Carlo simulations of Ising systems on square 

or simple cubic lattices with a random distribution of + bonds 

have revealed precisely this kind of picture, with large (typically 

proportional to N) energy barriers between degenerate ground 

states or low-lying states (Malaspinas, Kirkpatrick 1977). 

André et al. (1979) moreover hypothesize that if a phase 

transition exists in a frustrated system, it would be due to the 

internal field of the ‘rigid spins’ aligning the rest of the spins; 

thus, in a periodic frustrated system the ordered phase would 

necessarily reflect the periodicity of the ‘rigid spins’. This implies 

that if there exists a transition to an ordered phase in a periodic 

frustrated system, it cannot be to a spin glass phase. Although 

the last part of this statement is supported by studies on layered 

frustrated models (see next paragraphs) the argument is not 

convincing. A similar assumption is employed by Chui et al. (1982) 

in constructing a Landau type argument for determining the nature 

of the phase transition encountered in the FFSI model in 3-d. 

However, if exact renormalization group (RG) transformations 
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on fully frustrated hierarchical lattices are any guide at all, we 
know that the ordering in the low temperature phase may be 
incommensurate with the underlying lattice, as evidenced by the 
chaotic RG trajectories. (Mc Kay et al. 1982, Svrakié et al. 1982, 
Derrida et al. 1983, Erzan 1983). 

Derrida et al. (1978) have conjectured that for those frustrated 
models that have a transition temperature T, #0, there is a 
negative entropy associated with the formation of defects (negative 
interface entropy). The vanishing of the defect energy at T = 0 
does not signal the absence of a phase transition, but the vanishing 
of the negative interface entropy does. They have checked their 
conjecture in the case of the anisotropic odd model (where the 
AFM couplings — J’ are taken so that J’ >J, the FM couplings) 

and the anisotropic triangular AFM, where the AFM couplings in 

one direction are taken to be stronger than in the other two. 

In the latter case, T, = 0 although the GSE per spin is zero, and 

the interface energy in the direction perpendicular to the anisotropy 

direction is finite; but the interface entropy is zero. In the 

anisotropic odd model they recover the results that T,—0 as 
J’-+J; and they also show that the interface energy tends to 

zero in this limit as well. 

An Exact Criticality Condition 

Hoever et al. (1981) have treated random layered frustrated 

Ising models with translational invariance of both the horizontal 

and the vertical bonds in one direction, using transfer matrix 

methods. They have found that if the layering has a period 

of length v, with n, and n_ being the total number of ferro- 

and antiferromagnetic couplings in the vertical direction within 

each period (the horizontal bonds were chosen to be 

ferromagnetic) (‘), the transition temperature depends only on 

the absolute value of the mean coupling, or, |n, —n_|/v and is 
otherwise independent of the particular distribution of bonds 

@) We will show in Section III that the free energy depends only on 

the distribution of the plaquette frustration functions bp (Eq. 2.3). Thus 

there is no loss of generality in this coiche; bp is invariant under 

all Kx —» — Kx, 
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within each period. Their results have been extended by Kardar 

and Berker (1982) and Wolff et al. (1981) to anisotropic random 

layered systems involving a distribution of magnitudes as well as 

signs of the coupling constants. The exact criticality condition 

is given by 

y mi v 

% Kx =| & Ky| 
i=1 i=1 

where Kx is the dual (see section IV) of Kx and i is the row index. 
When the average vertical coupling within a strip is equal to zero, 

the transition temperature is depressed to zero. 

For all other values of the average vertical coupling the 

transition is either to an antiferromagnetic or ferromagnetic phase 

depending upon the ratio of the horizontal and vertical couplings. 

The important thing to note is that the transition is of the ordinary 

Ising type, the specific heat has a logarithmic singularity, except 

in the case where »v is allowed to go to infinity, in which case one 

obtains an infinitely weak singularity (Hoever and Zittartz 1981, 

Mc Coy 1977). For the model with K¥ = K; Ky = K,i=1...m, 

and Ky =—K,i=m+1,...¥,v=n-+m, Hoever and Zittartz 

(1981) find that if n=m,T,=0, the specific heat has a 

rounded maximum with respect to the temperature at some T + 0; 

and as m—o this maximum goes over to the logarithmic 

singularity of the Ising model. Their conjecture, that the rounded 

maximum signals ‘local’ ordering within the unfrustrated strips, 

effectively decoupled from each other by the frustrated layers, in 

the same spirit as the ‘cluster’ picture mentioned above, is 

remarkably born out by the behaviour of the specific heat reported 

from finite size scaling calculations made on strips of width m 

(Droz and Malaspinas 1982, Nightingale and Bléte 1980). On the 

other hand, for nm, but n/m~1, the amplitude of the 

logarithmic singularity is extremely small, and only a rounded 

maximum above T, is really visible — caution to experimentalists! — 
quite indistinguishable from the smooth specific heat curves 

obtaining for m =n, or in the limit v— o (see also Longa and 

Olés 1980). 

Besides coupling constant anisotropy, the introduction of an 

external field has been a fruitful approach to studying the effects 
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of ‘fine tuning’ (Toulouse 1980) frustration (Villain 1978, Penson 

et al. 1979). A third venue is provided by RG studies of hierarchical 

models (McKay et al. 1982, Svraki¢ et al. 1982, Erzan 1983) where 

the lattice structure, e.g. the coordination number, can be varied 

at will. However, there does not yet seem to be a universally 

applicable, quantitative measure of competition, comparable in 

elegance to the frustration function itself. 

Ground State Energy 

A way of tackling the problem of determining the ground 

state energy per spin in frustrated systems has been to define an 

average internal field (Derrida et al. 1979) equal to the difference 

between the number of satisfied and broken bonds incident on a 

spin, the average being taken over the ensemble of ground states. 

An amazing universality is displayed by this quantity, which is 

proportional to z, the coordination number of the lattice, 

for d< 4, and z’/”? for d >4 (Derrida et al. 1979, Alexander and 

Pincus 1980) for the fully frustrated lattices given in Fig. 2. 

Another universal feature of these lattices is the existence of a 

borderline dimensionality above which it is not possible to construct 

ground states such that only one bond is broken per each plaquette, 

i.e., the ‘overblocking effect’. For the generalized fcc and FFSI 

lattices this borderline dimensionality is found to be four (Derrida 
et al. 1979). 

The connection between ground state properties and the 

singularities of the free energy at T > 0 remains a subtle matter. 

Wolff et al. (1981) have shown for a random layered model, 

containing the odd model as a special case, that the critical surface 

as a function of the coupling constant anisotropy fails to reflect 

the discontinuities in the rest entropy, or the singularities 

(discontinuities in the slope) of the ground state energy surface. 

More recently, Garel and Maillard (1983) have demonstrated a 

remarkable fact: the partition function of a four parameter fully 

frustrated model (‘) (see Fig. 3g) is equivalent to the partition 

function of an anisotropic ferromagnetic model. The T = 0 point of 

(1) This does not violate gauge invariance. The reduction in the number 

of parameters is what allows the mapping to be possible. 
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the fully frustrated model maps to the critical temperature of the 

ferromagnetic model. In particular, for the odd model, the rest 

entropy is linked to the critical free energy of the ferromagnetic 

model. I am unable to comment on the implications of this fact 

at this moment. 

Correlation Functions 

Concerning the two point spin-spin correlation function of 

periodic or random layered, frustrated Ising systems, the following 

picture emerges: The triangular Ising AFM (Stephenson 1970a) 

and the FFSI in 2-d (the odd model) (Southern et al. 1980, Forgacs 

1980, Wolff and Zittartz 1982) and the ZZD model (see Fig. 3f) 

(Gabay 1980), where the coupling constants are uniform in 

magnitude and all the plaquettes are frustrated by a periodic 

arrangement of + bonds, and where T, = 0, have the common 

feature that at T = 0 the correlations decay with a power law, 

r(r)~r-? 

(quasi-LRO, Halperin 1981). The value of 7 is universally equal 

to 1/2. This behaviour is also found for the layered model with 

Ky > 0, KY > |K¥| and K¥ = —K¥,, (i is the row index). Note 
that here, too, T, = 0 (Wolff and Zittartz 1982). These authors 

have also found that for T> T,, 

T(r) ~exp(—r/é) 

with é~' ~ exp (— 2K* ). However, if | K*| > KY, although T, is 
still zero, there is perfect FM or AFM order within the rows, 

depending on the sign of Kx, and, at T = 0, P(r) within the rows 

tends to a constant as r— o (Wolff and Zittartz 1982). 

In all the cases that a nonzero transition temperature is 

allowed (and where the periodicity of the random layers stays 

finite) one has the usual Ising behaviour, i.e., 

T(r) ~r-? exp(—é/r) T>T, } ¢-(T-T,;)- 

r(r)~r-? 7 = 1/4 T= T, 

T(r) —- const T= 1. 
r>o 
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This is the case for the anisotropic triangular AFM (Stephenson 
1970b) and those layered models where 3,K*-=+ 0 (Wolff and 
Zittartz 1982). The anisotropic triangular AFM has the further 
peculiarity that for some T,, T,< T< Ty, short range order of 
the above type obtains; however for T > T,, the exponential decay 

of the correlation functions is modulated in the direction of the 
anisotropy axes by an oscillatory factor, with a temperature 

dependent wavelength (Stephenson 1970b). 

Another class of fully frustrated systems is afforded by the 
checkerboard lattice (Bryskin et al. 1980, André et al. 1979) and 
the ff hexagonal and Kagomé lattices (Siité 1981). For these 
‘superfrustrated’ lattices (Siit6 1981) there is no quasi-LRO even 
at T=0: the correlation length stays finite even at this 
temperature. Unfortunately, so far one cannot give a rule by 
which one may a priori decide if a lattice is superfrustrated or not. 
Bryskin et al. (1980) have given explicit expressions for the free 
energy, from which the zeroes of the partition function in the 
complex temperature plane may be calculated, for a partially 
frustrated lattice with a nonzero transition temperature, the odd 

model, and the checkerboard lattice. Work is in progress at this 

point for a full characterization of these systems via the distribution 

of the zeroes of their partition functions. 

The effect of frustrations on the correlation functions of 

systems with a quenched random distribution of frustrations has 

been studied by various authors. Fradkin et al. (1978) have made 

a high temperature study of pair correlations and shown that the 

correlation functions decrease in the presence of frustrations (*). 

Miyashita (1983) has considered the behaviour of correlations on 

frustrated lattices in 2-d, in the whole temperature range, 

depending on the relative positions of frustrated plaquettes with 

respect to the correlated spins. The results are extremely intriguing 

in that they reveal a non-monotonic suppression of correlations 

for certain configurations. This non-monotonicity of near-neighbour 
spin correlations had shown up in Migdal-Kadanoff type RG 

calculations on ff hierarchical lattices (Derrida et al. 1983, Erzan 

1983) and was the origin of the novel RG behaviour (stable and 

unstable periodic RG trajectories) found in those models. 

() See Section IV for further details. 

24 Portgal. Phys. — Vol. 15, fase. 1-2, pp. 9-54, 1984 

 



  

A. ERZAN — Frustrated spin systems 

Dilute Frustrated Systems 

Another approach to the spin glass problem has been to 

investigate the effect of dilution on fully frustrated systems, or, 

alternatively, the effect of low concentrations of frustration on the 

properties of unfrustrated systems. 

De Seze (1977) has given a phenomenological argument for 

the existence of a spin glass phase with a concentration dependent 

critical temperature in bipartite fully frustrated lattices (T, > 0 

for x <1). Ono (1980) finds an ordered phase in a bond diluted 

AFM triangular ‘cactus tree’ in an intermediate concentration 

range. André et al. (1979) give an argument that for the diluted 

odd model the critical temperature remains at T= 0, and that 

the correlations will have the same power law decay as in the 

pure lattice. 

Grest and Gabl (1979) have performed Monte Carlo computa- 

tions on the triangular and fcc AFM lattices, and have found 

spin glass-like ‘freezing’ behaviour for concentrations above the 

percolation threshold. In the fcc lattice the transition to the AFM 

phase is first changed from first to second order, and then 

for .8 < x < .4 a phase appears with no LRO but strong hysteresis 

effects (The Edwards-Anderson order parameter has been cal- 

culated and shows slow decay). The prevailing wisdom in spin glass 

literature rules out a stable SG phase in 2-d, but not in 3-d (see, 

for example, Sherrington 1983). 

De Nunes (1983) has performed a real space RG calculation 

on an AFM ff hierarchical lattice with bond dilution. At lower 

effective dimensionalities (or coordination number, z), the T = 0 

critical point is destroyed by dilution, whereas for higher z one 

has a transition to an antiferromagnetically ordered phase. For 
these higher effective dimensionalities, at fixed concentration x, 

the recursion relations exhibit stable periods (rather than fixed 
points) in the low temperature region. The transition line termi- 

nates at some x bigger than the percolation threshold, at a critical 

point of infinite order. 

The introduction of AFM bonds into an FM square lattice 

has been found (Vannimenus and Toulouse 1977) to destroy 

the FM transition at a concentration c of AFM bonds equal 

to .09. De Almeida et al. (1981) report a value of c = .166 
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obtained via an effective field approach. It is believed that the 
frustrated plaquettes percolate at this concentration (or an infinite 
string of frustrated plaquettes first appears). Miyashita and 
Suzuki (1981) have found a cluster (of rigid spins effectively 
decoupled from the rest by frustrated bonds) boundary percolation 
threshold at c=.15. For a triangular lattice the frustrated 
plaquette percolation threshold cy = .10—.15 (Sadiq et al. 1981). 
It is interesting to note that the concentration of frustrated 
plaquettes, c, , shows a saturation effect, and stays nearly constant 
at about 1/2, while c is varied above c;, up to the percolation 
threshold for the FM bonds (1/2 for the square lattice; the 
situation is of course symmetric around this concentration). The 
ground state energy per spin is therefore rather insensitive to the 

variation of c above cf (Kirkpatrick 1977). 
Schuster (1979), by implementing methods to be outlined in 

section III, has shown that there is a further transition in the 
frustration network as a function of c. Namely, an infinite ladder 
of AFM bonds first appears at c = .29, leading to the possibility of 
isolated frustrations. His results have been corroborated by Kolan 
and Palmer (1980) using Monte Carlo methods. It still remains to be 
ascertained whether this transition in the frustration network is 

accompanied by a corresponding ‘transition’ in the behaviour of the 

spin system at T>0O. For a topological phase transition in a 

frustrated x - y model, see Dzyaloshinskii and Obukov (1982). 

IlII— GAUGE VARIABLES, GAUGE INVARIANCE AND THE 

FRUSTRATION FUNCTION 

In the preceding section we have tried to give an overview 
of the phenomenology of frustrated systems. The methods 
employed to derive the results reported up to here were 
generalizations of methods applicable to conventional (unfrustra- 

ted) spin systems; in particular, transfer matrix methods, high 

temperature expansions (this last, however, making use of the 

gauge invariance and duality transformation concepts to be 

presented henceforth (Fradkin et al. 1978)), renormalization group 

analysis, and of course, Monte Carlo simulations. In this section we 

will introduce gauge variables as an extension of systems with 

spin degrees of freedom (Kadanoff 1976, Fradkin et al. 1978) and 
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the natural language in which to discuss ‘bond randomness’. This 

allows us to extract the thermodynamically relevant features of 

an ensemble of frustrated systems, as well as allowing us to 

treat annealed and quenched bond randomness as part of one 

continuous picture. 

Gauge Variables and Symmetries 

We shall define gauge variables to be those variables that 

depend on two nearest neighbour site (vertex) indices on the 

lattice. As opposed to the spin variables which are located at the 

vertices of the lattice and depend on only one site index, the 

gauge variables can be thought of as variables living on the edges 

connecting the nearest neighbor sites. They are, then, a type of 

random variable custom made for representing a system of random 

interactions between nearest neighbor sites on a lattice. (Actually, 

the generalization to long range interactions as, for example, in 

the case of the infinite range spin glass, has also been made, 

Nishimori and Stephen 1983) Clearly, we can label the gauge 

variables y, either y,; Where i and j are site indices, or yi,» 
where i indicates a site and » a particular lattice direction. 

Let us recall that the Hamiltonian in (2.1) 

=— 3 Ji f£(s;, 8;) 
(ij) 

is usually invariant under a set of symmetry operations 

1S f{ Se. (3.1) 

The simplest example is the Ising model, where 

i= +1, f(s,, 5;) =s,s;, and the only nontrivial such 
symmetry operation consists of 

{sj fr>{-sif- (3.2) 

This is a global symmetry: the operation is applied to all the 

spins s,; in the system at once. We can easily construct other 

examples. The q-state Potts model has 

E( 8:5 8) = by g (3.3) 
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where 6, , is the Kroenecker delta and spins s; can take on q 

different values. The relevant set of symmetry operations is 

obviously the group of permutations of q objects. We could, in 

fact, write the Potts spins (including the Ising model as the special 

case with q = 2) as q-dimensional vectors, 

ofr) (8,08) « Set) eS, (Cr) ) (3.4) 

with sx(r) =0,1 and * S,(r) = 1. We can then express the 

permutation transformations as 

(1) = Mh §,(r) BS) 

where the matrix M is a realization of the group of permutations 

of q objects, and a labels a particular element of this group. 

Following Kadanoff (1976), one can generalize this formulation to 

any set of spins s(r) with some number (not necessarily discrete) 

of internal states, and the group of transformations between these 

states. Let us choose M to be a unitary representation. Then the 

simplest scalar that can be formed from these spins s(r), under 

the group of transformations M, is, in matrix notation, 

f(s(r), s(r’)) =si(r) (M*)™ M* s(r’) (3.6) 

where r, r’ label lattice sites. Note that the particular element of 

the group, a, employed, is taken to be independent of r, and 

the resulting Hamiltonian is invariant under this global transfor- 

mation (3.5). 

Now let us consider a more general form of interactions 

between generalized spins residing at the lattice sites r, r’, which 

may depend not only on the lattice sites r, r’, but also on the 

internal states of the spins at those sites, and must have the 

matrix form %;(r, r) where k,1 label the internal states of 
the spins at r, r’. In matrix notation, 

H=-J 2 et (r) v(t, ") s(r7) (3.7) 
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The simplest example is again the Ising model, where 

wo (3) (8) 
and (3.8) 

vert (48) oF (28) 
the first giving rise to FM, the second to AFM interactions. If the 

spins in (3.7) are Potts spins as defined in eq. (3.4), and the 

v(r, r) then elements of the group of permutations of q objects 

(traceless except for the identity element), the Hamiltonian (3.7) 

represents a random vector Potts model (*). (Nishimori and 

Stephen 1983. These authors use a one dimensional representation 

of the symmetry group). 

These (matrix) variables y(r, r’) which can be thought of 

as residing on the bonds connecting the lattice sites r, r’, we shall 

call gauge variables. They, in turn, transform under gauge 

transformations, which one can write 

Ynn (fF, 7) = % Mie via Cr, ) (Mir? (3.9) 

Note that here one has the extra freedom of allowing the parti- 

cular element a of the symmetry group to depend on r, r’. One may 

(*). In Nishimori and Stephen’s (1983) notation, the Hamiltonian is 

given by 

H=-J y 8 (o,—o,+4%)=- % % Jy exp(2Ti(o,—o,)P/a) 
Gj) (ij) p 

where Ji5= exp(2 vir; /q) » Ti; =0, 1,...q-—1 may have any desired 

distribution. Clearly, i= 0 reduces to the FM Potts model. Ti; 0 constrains 

spins on adjacent sites i,j to be in states differing by V5 The AFM Potts 

model is equivalent to taking 

H=¥ ¥ 3 Jj, exp(27i(o,—o,)P/q) 
(ij) r#0 p 

(This model also correctly reduces to the Ising model for q= 2). The cyclic 

matrices y in the matrix representation above are given explicitly by 

Vey (ii ) = Sitter? lit rj! + Tj - 45 rn;=¢ pee GQ = 1 K, LHL, oe. 

ij 
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construct scalars from these gauge variables, that will be invariant 

under the (local) gauge transformation (3.9). The simplest such 

scalar is the trace of products of u(r, r’), such that r., r,... 

form a closed loop, and where we have again taken M to be 

unitary (Kadanoff 1976); see Fig. 6. 

f.(y) = Tr vrs te) Cte, ts) 0 Crm» 1) 
(3.10) 

= Tr MO) y Cri, te) (MOD Me) Cry tr) (Me )— 

  

  

a plaquette 

Li 
    

  

        

  

Fig. 6—T labels the path formed by the bonds (r,, r,), (13, Y3)--- 

(r,, T,). See Eq. (3.10). 

The smallest such loop f that may be formed on any given 

lattice is what is called a plaquette. Therefore, the simplest 

gauge-invariant objects we can construct out of the gauge 

variables, live on plaquettes (as opposed to the functions (3.6) 

formed from spin variables, which are invariant under global 

transformations, and live on bonds). 

In the case of the Potts model (‘) (with q > 1) let us define 

$, =CTr Ty) /Ca—1) , (3.11) 
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where II ¥ denotes the (matrix) product of the w variables around 
Pp 

the plaquette p. The function ¢, may be taken as the frustration 

function for the (vector) Potts model (*) with 

-~1/(q-1)_ plaquette frustrated 

p= 1 ” unfrustrated. 

Obviously, ¢, is invariant under the transformation (3.9). 
For q = 2, ¢$, reduces to the plaquette frustration function as 
defined by Toulouse (1977) using a one dimensional representation 

of the symmetry group Z, of the Ising model (*). 

Symmetries of the Partition Function 

After Kadanoff (1976) we shall call those representations of 

the symmetry groups of the spin and gauge variables simple, 

where one may write 

Tr f(s) => f(M"%s) 

and * * (3.12) 

Tr f(y) = f(M*y) 

g
M
 

where f, f are some function of the variables. Thus, if we have 

chosen simple representations for our spin and gauge variables, 

(¢) Clearly this choice is not unique. 

(2) In taking such a one dimensional representation of the symmetry 

group Z,, the form of Eq. (3.9) should be kept in mind, since it implies 

a constraint on the transformations that may be performed on a string of 

gauge variables forming a loop. E.g., in Fig. la, b, ‘flipping’ all the bonds 

simultaneously (multiplying each bond by -—1) is not an allowed gauge 

transformation, as will be immediately seen if one takes care to write 

Uij=M(i) Jij M(j)-? 

where i, j=1, 2, 3 are the vertices of the triangle, M(i)==+1, 

M(i)-1=M (i). However, Fig. 1 a and b are related by a gauge trans- 

formation, where M(1)=M(2)=-1, M(3)=1. Notice that the 

frustration function for this loop is again invariant under this transformation. 
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we may write the partition function of a quenched random bond 

system as 

Z= &% exp[K & s(r)i(M™)~*y(r,r°) M* s(r’) ] 
q4a(r)} (x, ¥’) (3.13) 

where K= 8 J. 
Now notice that Z is invariant under the set of gauge trans- 

formations (eq. 3.9) 

y(r,°) > M™ w(r, rv) CM), 

Thus we have our first result that the partition functions of 

two spin systems on lattices whose bond configurations may be 

obtained one from the other by a set of transformations (3.9) for 

some {a(r) }, are equal (Fradkin et al. 1978). 

A further symmetry of the partition function and, furthermore, 

of the (field free) Hamiltonian, is given by the following local 

transformation that affects not only the gauge variables impinging 

upon a particular site r, but also the spin variable at that site 

v(r, %)> M*® g(r, &”) I 
(3.13a) 

s(r)—> s(r) [M*%®]™ 

where I is the identity matrix. (In the more familiar language of 

the Ising model, this would, for example, correspond to reversing 

the sign of all the bonds impinging on r, and redefining the spin 

at r such that s——s). This mixed transformation is not needed 

for the development in this section, but in Section IV, when 

dealing with correlation functions, we will see that the correlation 

functions <s(r)s(r) > are not invariant under a mixed gauge 

transformation performed at the site r or r’, and therefore we 

have to consider slightly more generalized objects. 
It follows immediately from this invariance, that the partition 

function of a quenched random bond system must depend only 

on those sets of quantities (constructed from gauge variables) 

that are scalars under such transformations, and the partition 

function may be labeled by this set of quantities. We have already 

constructed such a quantity in Eqs. (3.10, 3.11) and for q-state 

Potts models we have shown that it is the direct generalization 
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of the frustration function of Toulouse for the Ising case. Thus, 

for a quenched random system we way write 

Z=Z4 op} (3.14) 

where p runs over all the plaquettes of the lattice. This is a 

rather remarkable fact. In particular, it leads, e.g. on the square 

lattice, to the simplification, that one may treat, instead of a 

system with a completely random distribution (magnitudes being 

held fixed), one where, say, the horizontal bonds are taken to be 

all of the same sign, and the vertical bonds are chosen randomly, 

since any distribution of ¢, may be realized in this way (Hoever 

et al. 1981a). 

Another immediate consequence of Eq. (3.13) is that Z can 

be written 

Z= 3 exp[K 3 si(MeO)—¥ (4) MAO oo] B18) 

where gs, is an arbitrarily chosen state of the variables s(r), 

which leads to (via Eq. 3.12) 

Z4 gy b= Oy % exPLK 3 99 ¥(ts H) 80] (3.16) 
v r,r 

where Qy is the ‘volume’ of the group of transformations M at 

each site (e.g. for the Z, symmetric Ising model, this is just 2 ), 

and where the prime on the sum indicates that the sum over the 

v is restricted to those configurations of y that give the same 

distribution of plaquette functions ¢,. Without this constraint, 
we clearly have the partition function of the annealed system. 

We may express this constraint by means of delta functions, viz., 

Z{ dps =O > 1 S[¢,—CTr W y—1)/(q-1)] 
{yt p Pp 

-exp[K Yo (r, *)]} (3.17) 

where too = s! y¥ s,. If we can construct some be such that 

fp>0. ¢=(Tr UD y—-1)/(q-1) 
° (3.18) 

f, <0 op CTE H ysl p/Ca-1) 
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the y being the integration variables and 4, now a fixed set of 
numbers for the plaquettes p, then we could write (Fradkin et al. 

1978) 

Z4oop = Om , lim & exp[K & Yo(r,r) + Ky ¥ fp] (3-19) 
>” {vt rr p 

For the Potts model, with definition (3.11), we may take 

f=, (Tr 1 y—1)/(q-1) (3.20) 

Notice that this has the interesting (and foreseeable) conse- 

quence that as q— o, those configurations which are frustrated 

contribute to Z with a vanishing weight compared to those that 

are not, ie., in this limit, with K,— «, the model becomes 

completely unfrustrated. 

Some comments as to the consequences of Eq (3.19) are in 

order. For instance, Toulouse and Vannimenus (1980) have pro- 

posed a ‘restricted annealing scheme’ where, instead of inserting 
the delta-functions in Eq. (3.17), one takes 

Z=OQy & exp[K & Yoo + Ky & by | (3.21) 
{yt ne P 

with the constraint that 

oInZ/dK,= <3 ¢,>=0 (3.22) 
p 

(K, = 0 is, of course, the annealed model). In the Ising case, 

which they treat, this corresponds to a constrained — annealed 

system with an equal number of frustrated and unfrustrated 

plaquettes. Since this is also expected to be true of the quenched 

model with an equal number of + bonds, on the average, this 

provides a first order approximation to the properties of the 

quenched system. With our definition of the frustration function 

for the Potts model, this same approximation holds true, for a 

distribution of couplings (in the one dimensional representation) 

given by 

Jip =I with probability p 

Jij=Jexp(27ir/q) ” ° (1-p) /(q-1) 
(r=1, 2,..., q-1) (3.23) 
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The solution of Eq. (3.22) in the space of K, K, (a solution 

exists only for K, <0) defines a subset, then, of models with 

spin and gauge coupling terms, which approximate the quenched 

random frustrated spin models in some sense. Note that the limit 

K, — © gives the pure Potts partition function. The limit K, > — 

gives the fully frustrated system. The line (3.22) interpolates 

between the annealed and the fully frustrated cases (Toulouse and 

Vannimenus 1980, Toulouse 1980). It would be interesting to work 

out how this line actually behaves for different models in d 

dimensions. Toulouse and Vannimenus (1980) ask the question 

whether it intersects any phase transition lines in the K, -K, 

space. This would be an approximation to a SG transition. One 

would also like to know if there is another transition on the 

K, > — co line and whether the < %, $, > = 0 line comes close to 

this in some way, as, say, the dimensionality is raised. Do the 

two transitions (if there are two) merge? This would be a step in 

the direction of the conjecture of Alexander and Pincus (1980) 

that the SG transition might become ‘like’ a transition in ff 

systems at high enough dimensionality. 

Quenched Averages 

Clearly, now, the task of taking ‘quenched averages’, or 

averaging the observables over all possible realizations of the 

(bond) randomness is simplified to a great extent, since one does 

not have to take into account each such possible realization but 

only those that differ from each other in a gauge invariant way, 

namely, those that give rise to distinct distributions of the 

generalized frustration function ¢,. These configurations will 

then have to be weighted by the probability of occurence of { ¢, | 

namely by P{¢,}, given a certain distribution P{ yf}. Let us 

write this (Fradkin et al. 1978, Schuster 1979) 

<Q>= 2 P{ by} QM spt (3.24) 
‘got 

where Q is any gauge independent quantity, and <> indicates 

a quenched average. Now one has to determine P{¢,}. Let us 
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assume that each bond (gauge) variable is distributed independently 
with a probability p, , (¥). Then, 

Plopp= ¥ Pid ft/S Pivt 
{yt {ut 

= > II Py w(¥)/% ae Py w (Cy) 

{yt Oe) {yt Gor) y 

=  exp[> Inp, ~(¥)]/% exp[> Inp, »(v)] 
it ,¥’) {yt le 

where the prime indicates that the sum includes only those 
configurations of y that give rise to { ¢, +. Let us again consider 

f, = So v(r, r) So 

Notice that if we have a distribution for the y» such that 
P,,» (y¢) is independent of r, r’, and for example, 

~ x f,=1 

we may write, 

p(f,) =p? exp[K, (f,—1/2) ] (3.26) 

where, 

p=x(l—x), K,=—In[x/(1-x)] (3.27) 

with the result that 

P{ tt = 3 exp [K, a foray 21 y 3 oxi f(r) ] 

Y : (3.28) 

Factors of pexp(—K,) have cancelled from the numerator 

and denominator: One immediately sees that P{ ¢, } is nothing 

but the ratio of the partition functions of the original spin system 

in the fixed gauge with all the s(r) = s, (see Eq. 3.16), i.e., 

Pater = 24 dginm, 1 a Ae te (3.29) 
p 
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with the effective coupling constant (temperature) given by 

Eq. (3.27) (Fradkin et al. 1978, Schuster 1979). 

Nishimori (1981) has noticed that this form of P { ¢, } together 
with Eq. (3.24) allows one to rigorously calculate the internal 

energy, and obtain bounds on the specific heat and correlation 

functions, on a subspace of the phase diagram given by K; = K. 

This leads to constraints on the form of the PM-SG-FM phase 

boundaries. (Nishimori 1981, Nishimori and Stephen 1983). 

To calculate P{ 4, { is not a trivial matter. In the next 

section, we will see that if { 4, ; has n frustrations, this task is 
equivalent to calculating an n-point correlation function in the 

system dual to the original system. This is certainly no great 

simplification! However, there are certain results that are 

accessible, as we shall see. 

IV — DUALITY TRANSFORMATIONS 

Duality is essentially a geometrical concept. Since we are 

dealing with statistical mechanical models on lattices, it is useful 

to introduce the notion of a simplex as an s dimensional element 

of the lattice in d dimensions. Thus, a point (vertex) has simplex 

number 0, a bond (edge) has simplex number 1, a plaquette 2, and 

an elementary volume, simplex number 3, etc. The dual to any 

lattice can be constructed by ‘intersecting’ each element of simplex 

number s of the original lattice by a simplex of dimensionality 

s = d-—s. (It is easy to convince oneself, that for a hypercubic 

lattice, where the dual can be obtained simply by displacing the 

lattice by 1/2 the lattice spacing in the (111...) direction, the 

above scheme holds. Thus, e.g., in 3d, each vertex (s = 0) of 

the original lattice is surrounded by a cube (s = 3), each bond 

(s = 1) is intersected by a plaquette (s — 2) and each plaquette 

(s = 2) is in turn intersected by a bond of the dual lattice (s = 1 ) 

etc.) (Savit 1980). 

Statistical mechanical models may be characterized by a 

simplex number s (Savit 1980, Toulouse 1980). The terms appearing 

in the Hamiltonian —invariants constructed from objects (spins, 
gauge variables etc.) living on simplices of dimension s— are 
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obtained by multiplying together such objects bounding a simplex 

of dimension s+ 1, on the given lattice. Thus in Eq. (3.6), 

spin-spin interactions involve a product of spins at the two ends 

of a bond, and the invariant constructed from gauge variables 

(Eq. 3.10) involves a product of gauge variables around a plaquette 

of the given lattice. 

Duality transformations are exact transformations that map 

a theory with simplex number s into one with simplex number 

s — d—s, in such a way that the partition functions of the two 

theories are simply proportional to each other, with a temperature 

dependent proportionality factor, and the temperature (coupling 

constant) of the dual theory is a monotone decreasing function of 

the first (In those theories that are self-dual — e.g. the Ising and 

Potts models on square lattices — this provides a unique way of 

determining the critical temperature). 

Duality transformations for the Ising model (Kadanoff and 

Ceva 1971, Wegner 1971), Ising model with gauge coupling term 

(Balian et al. 1975), models with Zy and U(1) symmetry (Savit 
1980) and the ordinary Potts model (Wu 1982) have already been 

extensively treated in the literature. What I propose to do here 

is to illustrate the basic ideas by deriving the duality transformation 

for the 2d Ising model with a gauge coupling term (The generali- 

zation of this to vector Potts models is given in the Appendix). 

Then I will discuss the concept of disorder variables and show 

how the partition function of a model with n frustrations (Eq. 3.29) 

is related to an n-point (disorder-disorder) correlation function in 

the dual model. I will then consider gauge invariant correlation 

functions and a few remarks about their asymptotic behaviour and 

phase transitions will follow. 

The Two-Dimensional Ising model 

Following Balian et al. (1975) let us consider the partition 

function in Eq. (3.19) with a finite gauge coupling constant K, . 

We may represent the gauge variables by A;; = + 1 in this case, 

and write, with the choice all s;—1, up to numerical factors, 

Z= x exp[K = Aj,+K, => OU Ajj] 
A. (ij) Pp Pp 

qj 

(4.1) 
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where II ,, A;; indicates a product of the gauge variables around 

the plaquette p, and &,, runs over all plaquettes. Note that we 

have set all the frustration functions ¢, = 1 for the time being, 
i.e., we are dealing with an unfrustrated system. Writing 

exp ( KA;; ) = cosh K (1+ A,, tanh K) 

(4.2) 

exp (K, If Ajj) = cosh K, (1+ II Aj; tanh K,) 
p p 

Z becomes 

Z = (cosh K)¥ (cosh K,)N = If (1+ Aj; tanh K) 
Aijt } 

ir (1+ i A,; tanh K,) (4.3) 
p p 

where N and E are the total number of sites and edges on the 

lattice, II, denotes a product over all plaquettes and H, denotes 

a product over all links (i,j). We may represent the result of 

expanding the products as a sum over graphs G on a lattice 

consisting of all distributions of plaquettes p and edges 1 on the 

lattice, 2, 

1m (1+ A,; tanh K) mn (1+ 0 A;; tanh K, ) 
1 i) Pp (4.4) 

= UU A,; tanh K fi (I, A,;) tanh K, 
GcfLlceGe per 

Now it is easy to see that as a result of the trace in Eq. (4.3), 

only those terms will survive where each plaquette edge is shared 
between two plaquettes, or coincides with a link 1, and is not 

shared by other plaquettes. This gives . 

Z = (cosh K )® (cosh K, )% 2 (tanh K)"™ (tanh K,)P = (4.5) 

where P is the total number of such plaquettes and L the total 
length of the boundary of the clusters of plaquettes, i.e., the total 
number of plaquette edges that belong to only one plaquette. Now 
we can construct /, , the dual graph to “2, and make a one to 
one correspondance with spin variables located on Ly with the 
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graphical elements of G. Thus we shall stipulate that if a 

plaquette on / belongs to G, then a spin residing at the site dual 

to this plaquette on £,, has the value sj; = —1, and if not, 

Ss = + 1. Thus we have 

P=3 (1—s;)/2 (4.6) 
1 

where i now runs over the sites of 2 p: This gives us automatically 

L= &% (1-s7s;)/2 (4.7) 
a,j) 

where the (i, j) are the adges of £,, and each of them 
intersects an edge of /. Clearly, Eq. (4.7) holds, because the 

product s; sj is positive for (i, j) crossing any link on 2 that 

is shared by two plaquettes on G, and is only negative if this link 

happens to be on the boundary of a cluster of plaquettes on G. 

Finally we have 

Z = (coshK )F (cosh K, )N 3,_{ exp[1/2IntanhK = (1—s; sz) ] 
1 Ti 

- exp[1/2 In tanhK, 3 (1—sz)]} 
i 

which we may write 

J 

48 } (iy) (4.8) 
+h X(s;-1)] 

Z = (coshK )® (coshK,)% - 3% exp[K* & (sz7s;-1) 
S~ j 

where 

K* = —1/2 In tanh K 

h =-—1/2 In tanh K, 

(4.9) 

are the dual couplings (inverse temperatures). Observe that the 

term in Eq. (4.1), of simplex number 1 has given rise to another 

such term, and the gauge coupling (s = 2) has given rise to a 

field term, with s — d—2 — 0. The transformation in 3d proceeds 

in like manner (Balian et al. 1975) where now the terms of the 

form 3; Aj; generate plaquette couplings and vice versa. 
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endpoints. It is easy to convince oneself that it is possible to 

deform this path arbitrarily, by performing a series of gauge 

transformations on the dual lattice. However, the correlation 

functions, unlike the partition function, are not invariant under 

the full mixed transformation, Eq. (3.13a). performed on the gauge 

variables impinging on i ori+r and the spins at these points. 

In the more familiar language of the Ising model, the trans- 

formation 

83; >(-1) 87 

Ati tine @(-1) AG i, i+w 

gives out a factor of (- 1) in front of Eq. (4.18) (Fradkin et al. 

1978, Savit 1980). 

Gauge Invariant Correlation Functions 

Having obtained a recipe (Eq. 3.24) for calculating quenched 

averages of gauge invariant quantities, let us proceed to construct 

the gauge invariant correlation functions for the Ising model in 

two and three dimensions. In two dimensions one has, 

n-point correlation 

  

Duality function in a sys- 

<s; 1 Ay sj> — tem with two frus- (4.23) 

Vij inasystemwith trations at the pla- 

n frustrations quettes dual to i, j. 

where I; is now a closed loop going through the points i, j 
(Fradkin et al. 1978, Savit 1980). In three dimensions, the 

correlation function 

<U, AUyA> 

where p, p’ are two different plaquettes is a gauge invariant 

quantity. But it turns out that the following object leads to more 

interesting results. For a pure gauge coupling theory, take any 

loop I and take the product of the plaquette functions lying on 

Portgal. Phys. — Vol. 15, fasc. 1-2, pp. 9-54, 1984 47



  
A. ERZAN — Frustrated spin systems 

any surface bounded by this loop. In the Ising case, with Ai, =1 

clearly only the gauge variables lying on the loop I itself survive. 

The correlation function 

Partition function of the 3d 

Ising spin system with all the 

bonds intersecting the surface 

Duality bounded by TI, reversed. (4.24) 
<uA> 

r Partition function of the unfrus- 

trated system. 

  

Fradkin et al. 1978, Savit 1980). Note that the configuration of 

bonds described in the numerator of the RHS of (4.24) corresponds, 

for a system originally without frustrations, to the creation of a 

closed loop of frustrations threaded by T. The from of Eq. (4.24) 

again allows one to calculate the excess free energy due to such 

a closed tube of frustrations, the simplest configuration of frustra- 

tions possible in 3d. In the high and low temperature limits. 

respectively, of the dual (gauge) model, one has 

a A,/K K>K, 
AF ~ (4.25) 

a L,/K K<K, 

where a;, a, are temperature dependent coefficients, An and L, 

are the minimal area enclosed by Tf and the perimeter of ©. K, 
is the critical coupling of the 3-d Ising model (Fradkin et al. 1978). 

Phase Transitions in the Frustration System 

Let us go back to the probability of finding a certain 

configuration of frustrations in an ensemble of random configura- 

tions of bonds. Consider the normalized probability (Schuster 

1979) 

Pidpt / PASS LPH Z4 byte / 24 $=] ix, (4.26) 

by Eq. (3.29). Clearly, the RHS is the same as Eq. (4.13), for 

a 2d Ising system, with K, being the dual temperature to K*. 
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path Tz7,, on the dual lattice gives rise to two frustrations 

precisely at those plaquettes dual to i andi-+r. This construction 

can be generalized to any 2n-point correlation function. Paths 

connecting these points pairwise will give rise, in the dual lattice, 

to n pairs of frustrations (Fradkin et al., Savit 1980). Thus we 

are back to the picture in the previous subsection, Eq. (4.13) and 

the following paragraph. Note, however, the added twist: the 

disorder-disorder correlation function of the Ising model in 2d is 

found to be equal to the partition of the model with frustrations 

located at the plaquettes dual to the disorder variables, normalized 

by the partition function of the unfrustrated model. One could 

equally well say that the disorder variables act as sources and 

sinks of defects within an ordered system (see Fig. 7). On the 

  

  

  

EB 
    

  

  

        
Fig. 7—A_ path (heavy line) Ti itr connects the disorder variables 

OFT? Fjyy, On the original lattice. The dual lattice (dashed lines) has the signs 

of the links dual to [ reversed (wiggly lines). The shaded plaquettes on the 

dual lattice are frustrated. 

dual system, the dual path of reversed couplings costs ground state 

energy proportional to the length of the path Tr (see Fradkin et al. 

for a detailed discussion). 
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In the 2d Potts model, a similar (though not quite identical) 

picture emerges. The relevant two point correlation function is 

(q-—1)"1-<q oer Cis: -1>=2Z"1 aa ub(G) gn(G) 

(4.20) 

where u = eX—1, G are all possible graphs in /, consisting of 

points and edges such that they contain a continuous path 

connecting the points i,itr,b ( G) and n ( G) are the number 

of edges and connected parts of G, respectively. Performing the 

duality transformation on the RHS of (4.20), one obtains 

(q—1)"* -<qd —1>=Z-1qN x (utyr@®) gad 
Def, OF Ci+r 

(4.21) 

where u = eX*—1; K*(K) being given by Eq. (10) of the 

Appendix. The graphs D on the dual lattice Ly now contain all 

possible graphs which have a seam of missing links between the 

plaquettes dual to i and i+r (the seam being dual to the path 

connecting i, i+ r in G). 

The extension of the above considerations to the 3d Ising 

model is also given in Savit (1980). One finds, upon performing a 

duality transformation on the correlation function < oj o7,, > 
that 

Partition function of the 

gauge coupling theory where 

for all the plaquettes pierced 

by a path connectingi,i+r, (4.22) 
Duality K,>—K,: 

Partition function of the frus- 

tration free gauge theory. 

  Sof Cir > 

with the disorder variables again acting as sources and sinks of 

a line of defects, this time in the dual gauge system. 

The correlation functions (4.18) and (4.22) are clearly 

independent of the position of the paths Tf apart from their 
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be in the direction 1. The coupling constants have been normalized 

by a constant factor q/(q—-1). 

Replacing an unfrustrated plaquette by a frustrated one now 

involves the replacement 

K,.> —K,/(q—1). 

at that plaquette (Eq. 3.11). Taking the limit K, — o, one sees 

that at the site dual to this plaquette 

h—-In (q—1)-iz, 

giving a factor, in the partition function, that is precisely 

exp{ [In (q—1)—i7z] 8¢_,1f=1-—4q 85.01. 
1 

At the sites dual to the unfrustrated plaquettes (K, > 0), 

lim h(K,) =0. Once more, we have 
K~+oo 

Pp 

J. Zidytew (24 b> =I tex, (4.15) 

=, lim <I (q8g_,1—-1) >xacx) exp NK, (2—q) /(q-1) 
D = i 

1 

where the product runs over the sites dual to the frustrated 

plaquettes and n is the number of frustrations. Note that the 

RHS of Eq. (4.15) is in the usual form of an n-point correlation 

fuction for the Potts model, in the absence of a field, at the uniform 

coupling given by K*(K). 

Disorder Variables 

Let us take a step back and consider how the dual variables 

are related to the original ones. To do this, it is instructive to go 

back to Eq. (4.1) and rewrite it in terms of spin variables. Let us 

set the plaquette coupling to zero. Then, from Eqs. (4.1) and (4.8), 

Z= x exp[K & s, s;] 
18;} (ij) 

= 2N-1 (coshK)= % exp[K* & (0707-1) ] (4.16) 
oj Vi 
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where we have denoted the dual spin variables by o;. Not that 
there is no one to one correspondance between the configurations 

of the s and the o (Savit 1980). However, the relationship (4.9) 

maps the high temperature region of one model into the low 

temperature region of its dual. If there is a phase transition to 

an ordered phase, the critical temperature for this self dual model 

is uniquely given by 

K, = —1/2 In tanh K, (4.17) 

Moreover, for K>K, (K*<K,) the order parameter 

<s>=0 (<o>=0) and vice versa. Thus in the temperature 

region that s is disordered, o is ordered, and vice- versa. With 

K* as a function of K (Eq. 4.9) we can call <o> sx) a disorder 

parameter. (Kadanoff and Ceva 1971, Fradkin et al. 1978, Savit 

1980). The usefulness of this term will be more apparent when 

we consider the disorder-disorder correlation function, which is 

nothing but the correlation function of the dual variables at an 

inverse temperature K*(K). 

<oj oj, > = & exp[K* & (oz oj —1)] Mog oj / Z(K*) 
7 ij Pi itr 

(4.18) 

where Tz7,, is any path connecting the points i, i+r and 

(k, 1) are links that lie on lzq4r- (This particular cancellation, 

due to the fact that (oz )? = 1 is of course peculiar to the Ising 

model.) Now we can again use the identity (4.12): notice that 

replacing K* by K*—iz/2 in Eq. (4.16) for those links lying 

on Tz 74;, Will give precisely the numerator in Eq. (4.18). Now 

making the duality transformation on the RHS of Eq. (4.18) we 

find (with the cancellation in the numerator and denominator of 

spin independent terms) 

<i tine — % empl Ki; 8; 8;] / Z(K(K*)) = (4.19) 

1 

where K;; = K(K*) on all links except those dual to the path 

Tzi4r Where K;;= —K(K*) (Kadanoff and Ceva 1971, Savit 

1980). The situation is illustrated in Fig. 7. Observe that the 

insertion of negative couplings on those bonds intersecting the 
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The above calculation can be generalized, among, to Zy 

models (Savit 1980; here they are called vector Potts models) 

where the Hamiltonian has the form 

H, = % cos 27p (s,;—s;+ 14;) /N (4.10) 
Pa 

where the s, are now angle variables, taking on values 27q/N, 
q =0,...N—1; and to models with continuous symmetry, e.g., 

the x-y model (Savit 1980). However, the Zy models are not 
self-dual, although the dual model also has Zy symmetry (Savit 
1980). Note, however, that our vector Potts model can be written 

as a sum of such models, in fact 

N-1 

A vector Potts H, 
l
M
 

p=0 

and it is also self-dual. The derivation of the duality relation 

proceeds very much like the standard Potts model (Wu 1982). 

I give a derivation of the duality relation in the gauge represen- 

tation of the partition function, in the Appendix. Note that duality 

is a local transformation, so that non-uniform interactions, as 

in (4.10) can be easily accomodated. 

Partition function of system with frustrations 

Now let us return to Eq. (4.1). Recall from Eq. (3.19) that we 

could represent the partition function of a pure spin system with 

quenched — in frustrations by inserting in the gauge coupling term 

in Eq. (4.1) a set of numbers ¢, , such that ¢, > 0 if the plaquette 

is unfrustrated and $, <0 if it is frustrated, and then taking 

the limit K,-—> «. In the present case, this would amount to 

nothing more than replacing K, by — K, at those plaquettes where 

there is a frustration before taking the limit K,— 0. The effect 
this has on the dual couplings (Eq. 4.9) is that the field at the sites 

dual to those plaquettes would be replaced by 

hoh—i7r/2 (4.11) 

Inserting this in Eq. (4.8), and using the identity 

exp[ixr(l—s)/2]=s (4.12) 
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for s = +1 we see that (for finite K, ) 

Z4 bp t/Z4 dp=l t= <U Si > Kn (4.13) 

where the i’ are sites dual to the frustrated plaquettes (Kadanoff 

and Ceva 1971, Fradkin et al. 1978). (Note that if we had factored 

out the constant terms from Eq. (4.8) we would have gotten 

exp(—izs/2) =~—is giving out a factor of (—i)",n = number 

of frustrations, in front of the correlation function in Eq. 4.13)). 

In order to quench the frustrations, we can now take K,—> « 

(h—0)! Thus the partition function of an Ising model with 

n frustrations, normalized by the unfrustrated partition function, 

is equal to an n-point correlation function of the dual system 

(Fradkin et al. 1978). 

Expression (4.13) also gives an immediate way of writing 

down the difference in free energies between a system with two 

frustrations and an unfrustrated system. Obviously 

—BAF=InZj 4, }|—InZq{ ¢,=1} 

=In< . Si > xs, mh +0 Gs) 

and this gives us a way of defining an effective interaction between 

frustrations (Fradkin et al. 1978, Savit 1980) with the excess free 

energy due to two frustrations in an unfrustrated background, as 

a function of r, the seperation of the frustrations, going 

asymptotically as r (diverging) for K* <K,, and decaying 
exponentially with r for K* >K,. 

The generalization to the Potts case is straightforward. One 

obtains the duality relations (see Appendix) 

K* = —In [(eK—1) /(eK + q—1)] 

h =—In [(eXP—1)/(eKP+q—1)] 

where h is a field acting on the sites i of the dual lattice, via 

a coupling of the form h Sori, Here the Potts spins are 

represented via the scalar variables o- , which take on values 

between 1 and q, and the field has been chosen (arbitrarily) to 
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THE LX RAY SPECTRUM OF ARGON, KRIPTON AND XENON (*) 
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Departamento de Fisica, Faculdade de Ciéncias, Universidade de Lisboa 

Av. Gama Pinto, 2 — 1699 Lisboa, Portugal 

(Received 4 November 1983) 

ABSTRACT — The LX-Ray spectrum of argon, kripton and xenon is 

interpreted in terms of the initial distribution of single and multiple vacancies. 

The relative intensity values of the diagram lines (I 4) , hidden satellites (1) 

and visible satellites (1, ) is calculated. 

The LX - Ray satellites are due to the following processes in 

multihole configurations: 

1. Satellites originated by. LM and LN double holes, created 

by Coster-Kronig (C. K.) L;->L.,. and L,—L, transitions or 

due to shake-off (s.o.) M,N following the L; (i= 1,2,3) 
ionization. The satellites due to double ionized states can be 

divided in several classes: LN—-MN; LN>NN; LM—>MM; 

LM > MN. 
The LN— MN and LN => NN satellites are not separated from 

the parent lines (hidden satellites). 

2. Satellites due to shake-off and Coster-Kronig transitions 

which produce states L,:MM, L,MN and L,NN; the last one 

leads to hidden satellites. 

We can generalize the following conclusions: satellites which 

arise from LM and LMxX states are separated from the parent 

lines; satellites due to LN or LNN states coincide with parent 

lines. 

(*) This work has been supported by I.N.I.C. (Portugal). 
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The number of diagram photons from single-hole states in 
the L; subshells is given by 

R R A . 
F,(L,) =n, (L,) » PL / (Pi + Px) (i= 1, 2,3) (1) 

For a L;— X transition the number of diagram photons is 

R R . 
Fi (L,) Plax / PL, (i= 1,2,3) (2) 

We denote by n,(L,) the vacancies in the L; level following 
the initial ionization and the rearrangement by Coster-Kronig 

A 
transitions and shake-off processes; P;, and P; correspond 

respectively to the radiative and Auger probabilities in atoms 

single ionized in the L, level. 

The relations (1) and (2) are valid for double and triple ionized 

states; however the parameters involved are respectively nj, , 
i 

yk yA wv’ 
R 

ly Ey PL, XY and ny» Pr. , Fi, , PL, YUXYz : 

In the present work we assume P = P’ = P”. The intensity 

ratios of visible satellites to diagram lines I,/I, and hidden 

satellites to diagram lines I, /I, are respectively 

I,/1qg = [nj( LM) + nf (LMM) + n/ (L;MN)]/n, (L,) 

and . 

I,/Tg = [nj (LN) + n? (L,NN) ]/n, (1; ) 

The triple ionizations are due to shake-off and Coster-Kronig 

processes or double Coster-Kronig transitions; obviously L,XY = 0. 

These ratios for the elements argon, kripton and xenon have 

been calculated in the present work; the values for L,, L, and L; 

levels are displayed in tables 1, 2 and 3. 

TABLE 1— Ratios of satellite to diagram lines (L, level). 

  

Z i (s.0.) / 1, 1 (.0.) / 1, 

  

18 0 0.167 

36 0.161 0.058 

54 0.214 0.007 
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NOTE ADDED IN PROOF: The representation chosen for the 

frustration function of the q-state vector Potts model in this 

paper leads to an asymmetry in the plaquette couplings (viz. 

Eqs. (3.19, 3.20), and therefore to vanishing weights for the 

frustrated configurations for q++2. This may be remedied by 

choosing a slightly different representation. Details are given in 

a forthcoming publication. 
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where the graphs 

G consist of bonds and lattice points on the lattice J, 

G, consist of plaquettes on 2. 

Performing the sums over the spin and gauge variables, yields, 

after a bit of work, 

exp (NK, /q) »Z4 ¢)=1 tx = 
(6) 

E+N b(G) 

q oder (U/V (v/q) 
w(G) gh (GG) 

where E and N are the number of edges and vertices in 2, b(G) 

is the number of bonds in G, p(G,) is the total number of 

plaquettes in G,, and c, (G, G, ) is the number closed circuits 

in G that are completely filled by clusters of plaquettes in Gas 

Now consider the (unfrustrated) random vector Potts model 

in the presence of a field. The partition function is 

st j 

(ij) i 

Z (K*,h) = i exp [K* > < vij Sj ths a s,] (7) 
s ~ 

where s, has been chosen in the 1 (Potts) direction. (The 

interaction hs;t s, may be written h 8g7,1in terms of the scalar 

variables o; ) . The Whitney polynomial representation is 

t t 
Zz K*,h = = II * §- wrx is Il 

eS HE OEE aeg "TPT ET ee, ORS (8) 

v 
-
 

where u* = eX*—1, w = eh—1, and the graphs 

G consist of vertices (points) and bonds on the dual lattice 2 

G,, consist only of points. 

Performing the summation over the spin variables gives, 

b(G) (G.) (GG ) 
Z(K*,h) = _% (ut) wk qk 

GG, 
(9) 
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where b has the same meaning as before, p(G,) is the total 

number of points in G, , and m(G, G,,) is the number of connected 

graphs in G that do not contain any points of G, . 
Define, as usual, the dual of the graph G (on J/ ) to be the 

graph obtained on / by placing bonds (rotated by 90°) on all 

links on £2 not occupied by bonds in G. Define the dual of G, to 
be the graph obtained by placing points on all plaquettes in / not 

occupied by plaquettes in G,. Clearly, the graphs generated are 

of the type G and G,. Moreover, observe that 

b(G) =E—b(G) 

p(G,) =N—p(G,) 

c,(G,G,) = m(G, Gy) 

if G is taken to be the dual of G and G, the dual of G,. 
Re-expressing Eq. (6) in terms of the sums over G and G,, we 
have 

NK ee 7146 =1h_% =u WZ (K*,h) 
p 

provided that 

(u*)~* =u/q 

(w)"'=v/q 
yielding the duality relations 

K* =—In[(eX-1)/(e® + q—1)] 10 
h =—In[(e ?—1)/(e?+q—1)]. a) 
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Then, for only two frustrations in { ¢, |, this probability behaves 

with the distance between the frustrations according to the 

exactly known two-point correlation fuction of the (field free) 

Ising model in two dimensions (Schuster 1979). Recall that K, is 

given as a function of the concentration x of (in this case) FM 

bonds (Eq. 3.27). Thus, Eqs. (4.26) and (4.13) predict a phase 

transition in the system of frustrations. With K, =— 1/2 In (2x — 1) 

we have: 

i) 1>x>x, = Kj git (~ .7072). The probability to find 
two frustrations separated by r decays like exp(—r/é) with é 

being the correlation length of the Ising model at temperature K*. 

ii) x = x,. é diverges, so that one obtains ‘pair dissociation’ 

of frustrations. 

iii) XxX <x). In this case there is a finite probability to find 

a single frustrated plaquette — thus necessarily an infinite ‘ladder’ 

of AFM bonds in the system (see Fig. 1c) (Schuster 1979). 

Notice that FM order is already destroyed at x < x* = .91 

(Vannimenus and Toulouse 1977) by the possibility of having 

infinite strings of frustrated plaquettes—at x,, however, new 

types of ‘domain walls’ (defects of infinite length on the spin 

system) associated with the ‘ladders’ of AFM bonds appear. Thus 

the ground state seems to be qualitatively changed as we go 

through x,. Although there is no finite temperature phase 

transition for this system, i.e., it remains paramagnetic down 

to T = 0, the singularities introduced into the quenched average 

for the free energy, via the probabilities P{¢, } persist at all 

temperatures! This was essentially foreseen by Schuster (1979), 

and it also has its generalization to the arbitrary -q Potts model. 
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APPENDIX 

Here I present the duality transformation for the Potts model 

in the presence of quenched randomness. (A different treatment 

has been given by Jauslin and Swendsen (1981).) 

Consider the partition function 

Z4¢p}= lim > y exp(K & sit Wj sj) 
p a 1 

"exp LK, = op (Tr u ¥—-1)/(q—1)] 
(1) 

A slightly more condensed notation has been used that in Section 3, 

which should be self explanatory. The bond labels have been 

dropped from the gauge variables appearing in products around 

plaquettes, as in Il y. The frustration function ¢, is defined via 
Dp 

Eq. (3.11). Extracting a constant factor from the sum, and defining 

K, = 4K/(q-1), 
we have 

Z + dp t= lim | exp (— NK, /q) Pet a exp (K & sii ij 8) ) 

P 
(2) 

- exp [K, = (Tr 1 y)/q] 
p p 

Define 

u=—eK—] 

vee r-—1 ‘ @) 

Then 

exp(K s,i 4; 85) = (sit vj $;) ut 
(4) 

exp(K, Tr Ii ¥/q)=(Tr ly)v/qtl. 
Pp p 

Now setting all ¢, = 1, and going over to the Whitney polynomial 

representation, we have for finite K,, 

Z1i¢dp = 1 IK = exp (—NK,/q). 

1 {s} oct dpeg 9 Yj $4 peg, (Tr D vy) v/q (5) 
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The energies of diagram and satellite lines are very close; so 

the energy corrections can be disregarded. The n,(L,), nj (L,;) 
and nj’ (L,) results have been obtained from ref. [1]; values 
of shake-off probabilities are from ref. [2] and Coster-Kronig 

parameters are from ref. [3, 4]. 

We can conclude that it seems impossible to observe a pure 

line (true diagram line); the diagram lines so observed are 

always contaminated by hidden satellites. 

Table 1 shows that satellite lines due to L, ionization are not 

negligible as it should be if they were only due to Coster-Kronig 

transitions. 
From tables 2 and 3 we can see that the total values of the 

ratio (I,,);/1q increase with the atomic number; thus for high 

values of Z there is a strong contamination of the diagram lines 

due to hidden satellites. 
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B+ ]EC DECAY OF ‘Au: y-RAY IDENTIFICATION 

F. BRAGANCA GiL (*), C. BouRGEOIS, P. KILCHER, G. PAROT, 

M. G. PorqueEt (2), B. ROUSSIERE, J. SAUVAGE-LETESSIER 

and the ISOCELE Collaboration 

Institut de Physique Nucléaire, 91406 Orsay, France 

(Received 30 November 1983) 

ABTRACT — The 8+/EC decay of 181Au has been studied with mass 

separated sources from the ISOCELE facility. Main y-rays which belong to 

the 181Au—> 181Pt decay have been identified from X-y coincidence measure- 

ments, A rotational band built on the 1/2— [521] Nilsson state has been 

developed up to the 7/2— state in 18!Pt. 

1 — INTRODUCTION 

The nuclei of platinum have been studied extensively [1-8] 

and a shape transition has been found for A= 186. **°Pt 

corresponds indeed to a prolate-shaped nucleus, whereas tT Pt 

seems to correspond to an oblate-shaped one. However some 

phenomena observed in this transitional region are not yet well 

understood: the existence of highly converted transitions in 

1s7pt [8], *87Au [9], *°Au [10, 11], 1°* 1% 7°"Hg [12, 13] for example. 

So we have extended the study of the platinum nuclei down to 

the very neutron-deficient isotopes. The present work is the first 

step of the study of the B+ /EC decay of **'Au. Gold isotopes 

were produced by Pt(p,xn) Au reactions, then mass-separated 

using the ISOCELE II facility at Orsay. X - y coincidence measure- 

(1) Centro de Fisica Nuclear, 1699 Lisboa, Portugal. 

(2) Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, 

91406 Orsay, France, 
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ments allowed us to clearly attribute twenty four y- rays to the 
IAu— Pt decay. 

Such results can also be very useful to identify the 1Au 
or **'Pt nuclei produced by (HI,xn) reactions. 
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Fig. 1— Coincidence spectra (2 keV gates from 60 to 70 keV) and singles 

y-ray spectrum. + indicates y-lines which belong to the 181Pt —181Ir decay, 
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2 — EXPERIMENTAL PROCEDURE 

A thick target of molten Pt- alloy was bombarded by a 

200 MeV proton beam from the Orsay synchrocyclotron in order 

to produce gold nuclei via Pt(p,xn) Au reactions. 

The proton beam intensity was 2.5 wA. The target was 

placed inside the high-temperature ion source [14] of the 

ISOCELE II isotope separator [15]. The mass-separated gold ions 

were collected on a mylar / aluminium tape and then carried to 

the counting station using a fast mechanical tape-transport system. 

Singles gamma - rays were measured with a planar Ge (HP ) 

X - ray detector (0.6 keV FWHM resolution at 122 keV ) anda 12 % 

efficiency coaxial Ge(HP) detector (2 keV FWHM resolution 

at 1.33 MeV). The energy ranges were from 4 keV to 400 keV 

and from 30 keV to 1500 keV respectively. The X - y - t coincidence 

data were simultaneously recorded event by event on magnetic 

tapes. The experimental data were analysed off-line on the Orsay 

IBM 138-370 computer. The coincidence events have been treated 

in order to get prompt coincidence bidimensional matrix. The 

coincidence spectra shown in Fig. 1 were obtained by setting 

2 keV gates on K, X-rays e.g. from 60 to 70 keV. Collecting 

and counting times were 5s per source and the data were 

accumulated for ten hours. 

3 — EXPERIMENTAL RESULTS AND DISCUSSION 

Energies and intensities of y- rays deduced from the y and X 
spectra are listed in table 1 together with the coincidence results, 

Twenty three y- rays can be clearly ascribed to the '*tAu— 1*!Pt 

decay. 

In spite of lack of intensity for the 159.4 keV y - line observed 

in coincidence with K, X - rays of Pt (see Fig. 1), we can attribute 

this transition to the ***Au— '*!Pt decay because the 40.5 keV 

y-line has been observed in coincidence with the 118.9 keV 

y-line and the sum 40.5 + 118.9 corresponds to 159.4 keV. This 

fact suggests a rather long lifetime for the state which decays by 

both the 159.4 keV transition and the 40.5 - 118.9 keV cascade. 
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TABLE 1—Gamma-ray data for the decay of 18!Au (collecting and counting 

times, for 181Au sources, were 5 s): energy error < 0.3 keV; intensity error ~ 10%. 

  

Main coincidences 

  

Main coincidences 

  

  

Energy ly Energy ly 

(keV) relative (keV) | relative 
Kq X-rays yctays Kq X-rays yrays 

40.5 15 Pt 118.9 402.7 15 Pt 

49.9 23 Pt 120.6 431.0 45 Pt 

431.0 481.0 74 Pt 

72.6 ~15 Pt 120.6 491.8 23 

79.4 84 Pt 198.6 534.3 42 Ir 

87.7 10 542.3 24 

89,8 13 Pt 556.4 20 

94.0 56 Pt 591.4 14 

112.3 23 Ir 230.2 611.0 41 

118.9 23 Pt 40.5 615.2 27 

120.6 43 Pt 49.9 629.3 58 

148.6 10 644.3 40 Pt 

159.4 55 (Pt) 651.0 | 44 Pt 
170.6 38 Pt 656.8 48 (Pt) 

184.4 19 Pt 94.0 663.1 72 Pt 

198.6 100 Pt 79.4 671.0 84 Pt 

206.9 26 Pt 679.0 29 

230.2 36 Ir 112.3 689.7 72 

243.5 24 Ir 710.1 29 

289.4 35 721.0 20 

310.2 23 Ir 730.1 23 Pt 

328.9 4 750.6 29 

332.3 6 756.4 15 

336.0 6 Ir 767.6 26 

348.5 8 Ir 774.7 61 Pt 

358.5 13 Pt 783.5 48 Pt               
  

The studies of the a decay of the mercury isotopes allowed 
E. Hagberg et al. [16] to propose level schemes for 177 17% 1%Pt 

and to identify the 1/2~ [521] state and the 3/2-, 5/27 rotational 

states built on it. Recently we have studied the B+/EC decay 

of '°Au [17] and **Au [18], and identified the 1/27 [521] 
rotational band built on the isomeric state of !*Pt and on the 
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ground state of '**Pt. The results obtained in the present work 

support the previous identification of the 5/2, 3/2, and 1/2 states 

of the 1/2~ [521] band in “Pt and allow us to propose the 

additional 7/2 1/27 [521] state. The systematic of the 1/27 [521] 
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Fig. 2—The systematic of the rotational band built on the 1/2— [521] state. 

Data were taken from ref. 16 (!77,179,181Pt), this work (181Pt), ref. 18 (83Pt), 

and ref, 17 (185Pt), Dashed line indicates transition not observed experimentally. 

Numbers in parentheses are y-line intensities. 

rotational band through the platinum isotopes is shown in Fig. 2. 

The stability observed indicates clearly that all the *~"*°Pt isotopes 

correspond to prolate-shaped nuclei contrary to the heavier 

platinum isotopes. 
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D-STATE AND NUCLEAR STRUCTURE EFFECTS 
IN (d, 2) REACTIONS 

F. D. SANtos and A. M. ErrRO 

Centro de Fisica Nuclear da Universidade de Lisboa 

Av. Gama Pinto, 2 — 1699 Lisboa Codex, Portugal 

(Received 14 December 1983) 

ABSTRACT —A general discussion is given of the effects of the a- particle 

D-state in (d, a) and (a, d) reactions. The dependence of the cross section 

and of the tensor analysing powers Ty on the asymptotic D- to S-state 

ratio p in the a@ particle and on the spectroscopic amplitudes of two-nucleon 

cluster transfer is discussed using a plane wave peripheral model. It is shown 

that the Ty in (d, a) reactions contain specific information on the a- particle 

D-state and also on the coherence properties of the two-nucleon states 

populated, 

1 — INTRODUCTION 

It is well known that the polarization observables of transfer 

reactions can be used to investigate the internal structure of 

composite particles. This property has been extensively applied to 

study the two and three body bound systems via the (d, p ) [1, 2], 

(d,t) and (d, *He) [8, 4] reactions. Recently it was suggested 

by Santos et al. [5] that the tensor analysing powers of (d,a) 

reactions display the effect of a relative D-state motion of two 

deuteron clusters in the a particle. This low energy (d,a) data 

is primarily sensitive to the parameter D, [1-6] which is closely 

related to the asymptotic D to S-state ratio op. 

The calculations of ref. [5] used a very simplified reaction 

model based in the plane wave approximation and did not take 

into account the effect of L mixing in the transition amplitude to 

unnatural parity states. More recently full finite range DWBA 

calculations [7] have shown that the tensor analysing powers 
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of (d,a) reactions are specially sensitive to the L mixing in 

unnatural parity transitions. This effect can be used to study the 

coherence properties of the states populated and to determine 

the spectroscopic amplitudes corresponding to each L value. 

Furthermore it was realized [7, 8] that the interference between L 

mixing and D-state effects in the presently available (ad ,a) tensor 

analysing power data makes it difficult to extract D, from the data. 

The cross section of (a,d) and (d,qa) reactions is also 

sensitive to the a-particle D-state. Nagarajan and Satchler [9] have 

shown that the D-state effects have a J-dependence which is 

qualitatively in agreement with the J-dependence observed in the 

cross section of ®°*Pb (a,d) reactions [10]. This was previously 

interpreted as resulting from multistep processes [10]. To compare 

these two types of J-dependence we need a more complete 

understanding of the D-state effects in (d,a@) reactions and in 

particular a realistic estimate of D.. 

Here we develop the DWBA theory of (a,d) and (d,a) 

reactions including both the S and D-state components of the 

a-particle. In section 2 the decomposition of the transition 

amplitude for two nucleon transfer reactions is performed. These 

results are then applied to the particular case of (a,d) and 

(d,a) reactions in section 3. In section 4 using a perturbative 

approach to generate the D-state component of the a-particle we 

calculate D, using gaussian wave functions and realistic tensor 

interactions. Finally in section 5 the special sensitivity of the 

tensor analysing powers to the L mixing and D-state effects is 

studied using a peripheral model for the transfer. 

2— TWO NUCLEON TRANSITION AMPLITUDE 

We consider a transfer reaction A(a,b) B where a = b+ x 

and x is the transferred cluster. The transition amplitude for the 

reaction, scattering from momentum k, to momentum k,, is 

T = <BJgMpg,bS8,0,;k,p|T!AJ, My, aS, 0,3 ky > (1) 

where J,, S,, Jp, S, are the spins of A, a, B, b. Performing 
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an expansion into terms with definite angular momentum trans- 

fer [11] we can write 

T= = (J,M,JMz/|JpMg) (1Aso|JM;) 
sJl 

(-1)°>"°® (s, 04, -oy|8 7) BY = 
where (J, M, J M;|J, Mg) is the usual Clebsch-Gordan coeffi- 
cient [12]. 

The amplitudes B!\ contain the reaction dynamics and 

transform under rotations like the conjugate of the spherical 

harmonic io It is important to notice that the expansion (2) 

in the angular momentum transfer representation is model inde- 

pendent since it is based only on the transformation properties 

under rotations of states with definite angular momentum. There- 

fore it does not assume any approximations regarding, for instance, 

spin dependent forces in the entrance and exit channels, the 

internal structure of the nuclei involved in the reaction and the 

one-step or sequential transfer nature of the reaction mechanism. 

We shall now particularize eq. (2) to two-nucleon transfer. 

In this case a=b+2 and B=A-+ 2. To proceed with the 

analysis of the transition amplitude we consider a double-parentage 

decomposition of the state Jp, Mp [13] 

|B Jp Mp> = & 83(9)|nIMy>|A’ Jy My > nA’IM., (3) 

(J,,-M,,J M;|Jp Mz) 

where 5;(7) is the spectroscopic amplitude for the 7, J 

configuration of the two nucleons with total angular momentum J 
relative to the state J,4, My,. The state |y J M; > results from 
coupling two single particle states with angular momenta j,, jp 

which are abbreviated by the parameter 7. By transforming from 

j-j to L-s coupling we can write 

\n Citig) IMs > = (4) 

uu Sis s(n) |LL,LM>|s,0,>(LMs,o,|JM;). 
Ss ¢ x 

Here $,, ;(7) are the usual symmetrized [13] Ls - jj recoupling 
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coefficients and |s, o, > is a spin-only wave function for the 
two nucleons with total spin s,. The dependence on the position 

coordinates r,; and r, of the two nucleons relative to A (Fig. 1) is 
contained in |l, l., LM>. 

  
Fig. 1— Coordinate vectors fora A(a,d)B_ reaction. 

It is now assumed that there is no exchange of nucleons 

between particles in the entrance and exit channels, no excitation 

of the target and no reorientation of the target spin through 

spin-dependent forces. With this assumption the integration over 

the target internal coordinates selects from eq. (3) the term A’ = A 

in which the target is in its ground state. Putting eqs. (3) and (4) 

into eq. (1), performing the integration over the internal coordinates 
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of A and writing the resulting expression in the form of eq. (2) 

we find that 

= | LL’ Ir 
BY = = S3(0) Le y(n) + Aisis Bun. 

ns,L x L x x (5) 

The coefficients Aj:*’ are the same as in ref. [14] and are 
x 

given by 

LL’ a 6 J-s-l-L/ 

Ags =Sai(-1) | W(Lsxls;JL’) (6) 
x 

while 

gn =k’ & (1) (LM LYM’ |) (-1)® > 
5 LL SaS %x % %D 

oMWM™’ 
(S, o_Sp-op| So) (L’ M's, o,| So ) (7) 

< bS,0,38,0,31,1,.LM;k,|T] as,o,;k,>. 

Here (2s + 1)1/? is abbreviated by s. We notice that the total 
orbital angular momentum transfer in the reaction, |, is composed 

of a part L and a part L’ which in turn results from the decom- 

position of the spin transfer s into a spin part s, and an orbital 

part L’. 

In the microscopic approach to two-nucleon transfer reactions 

the amplitudes g\,,,, are calculated from states |l, 1, LM > 

constructed from shell model wave functions in the nucleon 

coordinates r, and r.. However to obtain the projectile form factor 

it is convenient to transform from the coordinates r, and r. to 

he =m—r and R =(r,+ Fr.) /2. These vectors are represented 

schematically in Fig. 1. Using a basis of normalized wave 

functions ¢,; we can perform the expansion 

<nnl/LLLM> = os tk Cnt NA (7) [ nt (tis ) ® gna(R) jt 
x 

(8) 

where n and N are quantum numbers that specify the number of 

nodes of the wave functions ¢. In the particular case of harmonic 

oscillator wave functions the c,; jy, are the well known Moshinsky 
x 

coefficients [15]. 
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We now assume that the reaction is a one-step process and 

take V,, for the transfer interaction. It is then straightforward 

to conclude that the T amplitude in eq. (7) depends on the 

internal structure of the projectile through the matrix element 

< bs, o, ; nj, m,|Vp,|as,o, >. Here j, =|, +s, is the total 

angular momentum of the transferred two-nucleon cluster. 

To proceed with the analysis of the transition matrix 

elements we use the DWBA theory. No spin dependent interactions 

either in the entrance or the exit channel are considered in order 

to simplify the discussion. With this assumption the DWBA 

amplitude in eq. (7) is [14] 

< bs, 6,38, 0,31,1,LM;k,|T|as,o,;k, > = 

> Co wa(7) (yA, AE| LM) (1, Ax Sx ox | Jx My) 
nNA¢ x 

1a 4 

ao FOR far 4” Ck, ey) by, (R) YE*CR) 

(9) 

<bs,o,; x (nl,s,) j<M | V px| 2S ge e> eee CKys ra) . 

Here X, and %, are distorted waves and r is the displacement 
vector between the centers of mass of the two-nucleon clusters 

x and b. 

3—(a,d) AND (d,a) REACTIONS 

Our present interest is to consider the particular case of 

(a,d) reactions. The range of n,l,,s, values to be considered 

in eqs. (5), (7) and (9) depends on the assumptions that are made 

regarding the wave functions of the a- particle and residual 

nucleus. Conservation of isospin implies that the transferred 

two-nucleon cluster has T= 0. Thus it must be either an even 

parity state with s, = 1 or an odd parity state with s, = 0. The 

contribution from the latter type of state is believed to be small 

since it can only arise from the overlap with odd parity components 

in the variable r,. in the a particle. 

It is therefore usually assumed that the transferred two-nucleon 

cluster has even parity and only the 1, = 0 state is taken into 
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account in DWBA calculations. Furthermore it is frequently 

supposed that the two nucleons are in a relative S state with 

no nodes (n — 0). However we note that the l, = 2 states have 

a non-vanishing overlap with parts of the « particle wave function 

and in particular with its D-state component. 

With 1, = 0 we conclude that j, = 1 and the Vax matrix 

element of eq (9) can be expanded as [7] 

<dl og; x(n0l) 1 ox | Vax|a > = 

1/23 CL)" (LM To Loa) Vane (1) YEH CFD ad 
seit 

The vector r represented in Fig. 1 is the separation between 

the centers of mass of the clusters; r= (rs2 + ra) /2 with 

rij = —rj. As before we denote by 1,2 the transferred nucleons 

and by 1,3 and 2,4 the identical particles in the a particle. 

Conservation of parity implies that L’ can only be 0 and 2. The 

L’=0 and L’=2 terms on the right hand side of eq. (10) 

correspond to two different spin configurations in the a particle 

in which the spins of the two spin one clusters are antiparallel 

and parallel, respectively. When substituting eqs. (9) and (10) into 

eq. (7) and performing the summations over magnetic quantum 

numbers it is found that the orbital angular momentum L’ in 

eq. (10) is in fact the same as L’ in eq. (7). This gives 

= RIA 
WL = CroNL (7) Boxuy > (11) 

with 

Ba = V3/2 % (-1)+™ (LML’=M’|1X) 
MM’ 

fa@R far 1" (kara) dR) YE CR) (a2) 

Vane (1) YE (Cr) 4 (Kas ta) 

Using eqs. (5) and (11) we can write 

B= ay, Gunus a Any Bou - (13) 
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Here the information on the nuclear structure of the A + 2 nucleus 

is as much as possible concentrated in the amplitude 

Ganus = > S$3(7) Suis(7) Cnonn (7) . (14) 

On the other hand the information on the a particle is contained 

in the sum over L’. 

The differential cross section for the A(a,d)B reaction 

is an incoherent sum over I and J 

do/do x & (2Jg +1) / (21+ 1) |B |? (15) 
= 3 (gt 1) /(U+1) 1S Gans & AGH BiNux |? - 

With the inclusion of the «a- particle D-state the total orbital 
angular momentum transfer | may not be equal to L. Furthermore 
we notice that the L’ = 2 contribution introduces a J dependence 
into the cross section through the Ak coefficients. 

Here we are particularly interested in the analysing powers 

of the inverse reaction B(d, a) A. From invariance under time 

reversal the analysing powers Tq Of the B(d, a)A reaction 

are related with the polarization tensors t,, of the A(a, d) B 
reaction by [11] 

Tq = (-1)* tig (16) 

when using the same coordinate system on both sides of eq. (16). 

The polarization tensors tq are given by 

tyq = Trace (T' »,,(1) T) / Trace (T'T) (17) 

where T is the transition amplitude for the (a, d) reaction 

and 7,,(1) are the usual spin one operators [16]. Using 

eqs. (2), (16) and (17) we obtain 

Tea = —V3 (3 (21+ 1)-7| BR |2)> 
IN . (8) 

XS (-1)¥+9t+4 W111; Jk) (1-A ‘VN’ |kq) BA, BUD’. 
STAY 

Unlike the cross section the T,, involve a coherent sum over 

Bi. amplitudes with different 1. 
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4— THE ASYMPTOTIC D- to S-STATE RATIO 

IN THE a PARTICLE 

A full finite range DWBA calculation for B Ca ,a)A 

reactions requires the knowledge of the radial wave functions 

Var’ (r), defined in eq. (10). We consider only the V4, matrix 

element for n=O because the dominant component of the 

expansion (8) in the internal variable r.2 of the transferred cluster 

is an S state with no nodes [17]. In the following it is therefore 

assumed that n = 0 and all dependence on n is dropped. However 

we note that at least in the L’ = 0 part of the transition amplitude 

the contributions from S state cluster states with n+ 0 are not 

negligible for some cases [18]. 

The overlap between the « particle wave function and the 

two spin-one clusters has an expansion analogous to eq. (10) [5, 7] 

< $99 (3,4) $5* (1,2) | 4 > = (19) 

i/a 0 (-1)%4 (LM! lox|1-g) Uy (7) YE Cr). 

This function satisfies the equation 

—(B,—By—B, + T,) < $44(3,4) 63% (1,2) | ¢.> (20) 

= < o99(3,4) 3% (12) | Vax | a > 

where on the right hand side the matrix element is the same 

as in eq. (10). B,, By, B, are binding energies and T, is the 

kinetic energy in r. Combining eqs. (10), (19) and (20) we 

conclude that the radial wave functions ux, and v;, are related by 

v(t) YM (r) =—(#2/2M) (a? -V?) u(r) YM (r), = 21) 

where « — [2M(B,—Ba—Bx) /#?]*” is the wave number of 

the relative motion between clusters in the a particle. Eq. (21) 

shows that asymptotically, for large r, 

uy (r) > Ur) i’ hy, (ier), (22) 
r>oo 
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neglecting the Coulomb interaction between clusters. The 
asymptotic D- to S-state ratio in the « particle is [5] 

C=H2/ Uo . (23) 

In low energy (d,a) reactions the DWBA calculations are 
not very sensitive to the precise and presently unknown short 
range behaviour of the functions u,,(r) [7,8]. The calculated 
tensor analyzing powers depend to a good approximation upon 
u, and u, only through the parameter D, defined by [1] 

D.= fou (r) ride /15 fu, (r) x dr (24) 

An alternative expression 

D, = (2M / fe? ) [i ve(ry rear / fu (x) x ar (25) 

is obtained using eq. (21) to relate the coefficients of the k? term 
in a power series expansion of u, and v, in momentum space. 
The substitution of the asymptotic forms (22) into eq. (24) gives 
the well known relation [1, 19] 

D,.= ¢ fx. (26) 

However the reliability of this approximate relation is expected 
to be much smaller in (d,a) reactions than in (d,p) reactions 
because of the large a particle binding energy. 

A non-vanishing D, can only be obtained through the 
nucleon-nucleon tensor interaction in the four body bound system. 
To obtain an estimate of D, we assume, in analogy with what is 
presently known about the three body bound system [3], that 
uy and u, are primarily determined, respectively, by the overlaps 
< $4(3,4) $, (1,2) | dug > and < $4(3,4) 4, (1,2) | ¢yp > with 

the S and D state components of the a particle wave function 

oa = das - dud - (27) 

It is important to emphasize that this is an approximation. For 

instance it is easily verified that the S state component ¢, gives 
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contributions to u, through the D-states in the spin one clusters. 

These contributions are probably small because they arise from 

low probability components in ¢,, that result from coupling 

states with non-zero orbital angular momenta in the coordinates 

rie, ts1,r to a total LY = 0. 

A model to generate ¢,p is required in order to calculate D, . 

Using a perturbative treatment [5] we can write, to first order in 

the tensor interaction, 

(T+ 3 VeCisj) + Ba) ld >=— 3 Vrij) a>. (28) 

Here V.(i,j) and 

Vr(i,j) = Vr (rij) Sie (i,j) (29) 

are the central and tensor parts of the nucleon-nucleon interaction. 

The overlap of eq. (28) with the spin one clusters satisfies the 

equation 

(B,—Ba—-B, + T,) < ¢99(3,4) $9*(1,2) | dp > = 
(30) 

— < b4a% B14) ox8(1,2)] % Va Csi) | bas > 

if the central interactions between clusters are neglected. This 

approximation is based on the fact that the effect of V, is reduced 

by the centrifugal barrier associated with the D-state in r. 

On the right hand side of eq. (30) there are no contributions 

from V,(1,3) and V,(2,4) since the nucleon pairs 1,3 and 2,4 

are in singlet states. Furthermore the tensor interactions Vy (1,2 ) 

and V, (3,4) do not generate a relative D-state motion of the 

cluster if we consider only the dominant component of dys 

exclusively with S states in r.,1rs,,r- Thus combining eqs. (10), 

(21) and (30) yields 

< $92(3,4) 69%(1,2) | V_(2,3) + Vo (1,4) | dug > = 

1/2 (-1) 7 (2M’lo,|1-0g) v.(r) YM (tr). (31) 
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Using eqs. (19), (25) and (31) it is now straightforward to 
calculate the parameter D,. This calculation is considerably 
simplified by the use of gaussian wave functions to represent 
the bound states 

dags= E(A) exp[—A(ri,+r,+2r) /4]%,(1,3)% (2,4), (32) 

oat (3,4) o3*(1,2) = F*(v) exp[-v (12, + 7,) /2] i 
(3 

X24(3,4)X9x(1,2). 

In eq. (33) we made the usual assumption of describing 
x by a deuteron wave function. E(\) = 2-%2(A/-7 )*/* and 

F(v)=(»/7)* are normalization constants and %, (i, j) and 

%7(i,j) are singlet and triplet spin wave functions. The 

parameters \ and v are related to the a- particle and deuteron rms 
radius by 

> 1/2 a 

<0" > « paciae = 3/(2V24), (34) 

1/2 

<r> deuteron = 1/2 V3/2» . (35) 

With the wave functions (32) and (33), the radial function u, is 
a gaussian function 

Uo (r) =4 (28-3 (4-2 dP vo 1/4 eA r/2 (36) 

where 5 = v+/2. To calculate v.(r) from eq. (31) it is 
convenient to write 

%,(1,3)% (2,4) = 
(37) 

1/2[%(1,4)% (3,2) +3 (-1)1+m ¥m(1,4)%7™(3,2)] 

since we are interested in the tensor force in the nucleon pairs 
1,4 and 2,3. Using the relation 

S.(F)W=4V2% X (lo 2M[ 10) YM(F) x" 38) 
oo” M 
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and eqs. (32) and (33) we obtain 

v2(r) = 27(A8/7)**(v/8) >? exp[—(v +r) 1? ] 

* (39) 
fi ie(2i8rx) exp(—8x*) Va(x) x dx. 

Finally doing the integrations over r in eq. (25) gives 

D, = (8/15) (B,—2Bg)71(A8/7)*?27[8/(v +A) ]” 
(40) 

J, Vo (x) exp [-A8 x? /2(v+ A) ]xtdx 

Using the one-pion-exchange tensor potentital (OPEP) 

Vo(t) =—Cy h,(iur) (41) 

with C, = 10463 MeV and »=0.7 fm [20] we obtain 
D, = —0.153 fm? for deuteron and a particle rms radius of 

1.96 fm and 1.42 fm [21], respectively. The introduction of a 

cutoff factor [22], 1-exp(-Ar?) where A = 0.735 fm~?, in the 

OPEP tensor potential increases D, to—0.117 fm’. This change 

of 23 % indicates that the parameter D, depends on the behaviour 

of the tensor interaction at distances smaller than 2 fm. The 

sensitivity of D, to the tensor interaction at short distances is 

much stronger in (d,a) than in (d,p), (d,t) or (d,*He) 

reactions. The values of D, become slightly larger when either 

the rms radius of the deuteron or the rms radius of the a particle 

are increased. For instance D, = — 0.124 fm? for deuteron and a 

particle rms radii of 2.10 fm and 1.70 fm, respectively. 

Although the model used to calculate D, is probably realistic 

the bound state wave functions are not adequate. In fact D, is 

very sensitive to the asymptotic region of large r. Thus we can 

expect that the calculated values of D, are overestimated because 

they were obtained with gaussian functions. The same problem of 

overestimated values of D., was also found in calculations of 

D, for *H when using wave functions with incorrect asymptotic 
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behaviour [23]. Calculations based on the very simplified model 
for p developed in ref. [5] give —0.35 < D, < —0.15 fm? [24]. This 
model has the unrealistic feature that the tensor interaction 
between clusters depends only on the coordinate r but, on the 
other hand, the calculations were performed with wave functions 
uo (r) with correct asymptotic behaviour. 

5 — PERIPHERAL MODEL OF (d,a) AND (a,d) REACTIONS 

To study the dependence of the cross section and of the 
analysing powers on the amplitudes Gy;,; and also on the 
asymptotic D- to S-state ratio p we use the peripheral model 
developed in refs. [5,25]. The bound state wave functions of the 
transferred two nucleon cluster in the « particle and in the 
nucleus B are represented by their asymptotic forms for large r 

uy, (r) = Uy, iL’ hy (ier), (42) 

oni (tT) =Uyn it hy (ifr). (43) 

Here @ is the wave number corresponding to the binding energy 
of the cluster x in B and %,,;, are asymptotic normalization 

constants. For small recoil effects the BY, ,, amplitudes can be 
approximated by 

BR = ¥3/2 Slr (LML -M’|1)) 

faer [ avr “> (ka, (m,/m,) R) dnui(|R-arl) (44) 

Y™" (Rar) v,,(r) YM (#) UY (k,, RB) - 

The value of the parameter a depends on the particular assumptions 

made in the derivation of eq. (44). For instance if we choose R as 

the average of the arguments of the two distorted waves [26] 

then a = 3/4. In the usual form of the non-recoil approximation [27] 

for heavy ion transfer reactions a = 1. 
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With the bound state wave functions (42) and (43) the r 

integration in eq. (44) can be performed analytically. In fact the 

formula A. 46 of ref. [14] gives 

farrit hy, (iB) R-r|) YE (Ror) Cv? a? DY hy, (iar) YE (1) 

=V47L’(L’010|LO) (-1)’+™ (LML’-M’|1)) (45) 

(BY / a1) th, (iBR) ¥) (R). 

Therefore using eqs. (42), (43) and (45) we obtain 

S (-1)4*!(LML’-M’|1A)- 
MM’ 

fate dxn(R-ar|) YM*(Riar) v(r) YE (r)= (46) 
2 eh a L’/ * x 

"a t,, Vex Lf (1010|L0) (*) ih, (iBR) ¥?) (R) 
2 Ma a 

The neglect of the recoil induced by the transfer implies that only 

normal parity values of 1 are allowed 

1+ L+L’ = even. (47) 

The substitution of eq. (46) into eq. (44) and the use of plane 

waves to represent the scattering states gives 

BR =1.(Q) YP (Q) L'(L010|L0) (ab /a)™ Wry, My, (48) 

Here 

QO = k,—(m,/ Mg) kg , (49) 

is the momentum transfer in the reaction and 

1(Q) =2V3 mr (A? /Ma) (-1)*fh, (i) (QR) RAR. 
(50) 
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Finally the combination of eqs. (13) and (48) yield 

* A 

By = UY} (Q) , (51) 

with 

Us =1,(Q) % Sus L’ (L010 L0) ARS Ur (aB/a)’. (52) 

The information on the A + 2 nucleus is now entirely contained 

in the spectroscopic amplitude 

Sur = a Guus Myr = = 83 (7) Spis (7) Conn (7) Mun - (53) 

Using eqs. (15) and (51) it is easily concluded that the cross 

section is an incoherent sum of the square of the amplitudes 

U,; over I and J 

do /do « (2g +1)/4m ¥ Ujy . (54) 

It is also straightforward to obtain an expression for the 

analysing powers T,,, as a function of U;;. Since the dependence 

on the magnetic quantum number in Bi is now given by the 

spherical harmonic Y} the summation over \ and 2’ in eq. (18) 

gives rise to a Clebsch-Gordan coefficient (10 1’0|k0) and implies 

that the T,, are proportional to Y; ( Q). Furthermore there is 
a restriction in the values of k. In a given transition the allowed 

values of L have all the same parity and L’ is even. Therefore 

the selection rule (47) implies that all values of the total orbital 

angular momentum transfer | have the same parity. In conclusion 

the analyzing powers ‘with k odd vanish in the peripheral model. 

This is a general property of plane wave approximations [28]. 

For k = 2 eqs. (18) and (51) yield 

Tog = —(87/5)27AY,(Q), (55) 

with 

A= (3/2) (3 Ujs)~* 2 17 (1010 | 20) W (111/1;52) Uy Uys 

(56) 
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Eq. (55) shows that in the peripheral model the angular 

dependence of the tensor analyzing powers is essentially determined 

by the spherical harmonics Y5 ( Q). In the Madison convention 

coordinate system [16] where the z axis is along kg and the y 

axis is along kg X kp 

To = —(1/¥2) A(3cos?y—1), (57a) 

T. = V3Asinycosy, (57b) 

Tor = —( 3/2) Asin? y. (57c) 

The angle 

y = are tg{ sino [coso—(m,/m,)(k,/k,)]-'} (58) 

is the angle between Q and kg and © is the scattering angle. 

The relations (57) acquire a particularly simple form when the 

tensor analyzing powers are expressed in a cartesian representation 

A,, = —(1/V2) (T,,-V6T,,) = (A/2) (3cos2y—1), (59a) 

Bing = —(1/V2) (T,, + V6T., ) = BA, | (59b) 

Aun = —(Agy + Ayy) = —(A/2) (3 cos 2y +1). (59¢c) 

The most significant aspect of eq. (59) is that A,, is, to a 

good approximation, independent of ©. This property of A,, is 

common to other reactions [25] and has a simple physical inter- 
pretation. The difference between the unpolarized cross section 

and a cross section for a spin orientation perpendicular to the 

reaction plane is insensitive to the scattering angle because the 

correlation between spin and deformation implies that the wave 

function of relative motion between clusters has spherical symmetry 

in the reaction plane. This spherical symmetry is broken for other 

spin orientations and as a result the tensor analyzing powers 

become dependent on ©. For instance the analyzing power A,, 

has a minimum of -2A at © = arc cos (m,kyg/mgk,) and is 

equal to A at 6 = 0° and 180°. 
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5.1 — Natural parity transitions 

In natural parity transitions L = J. From eqs. (6) and (52) 
and with the help of tables of angular momentum coupling 
coefficients [12] we obtain 

Urs = 845 (Uo /V 3) 1, S55[1 + (p/V2) (aB/a)?]. (60) 

The differential cross section in a transition with a given J is 

(do / dQ); « (%o? / 127) 41,S,,[1 + (p/V2) (aB/a)?] 7 

The fact that p is negative implies that the D-state of the a particle 
decreases the cross section of (d,a) and (a,d) natural parity 
transitions. This effect is particularly noticeable in transitions 
with large f~. 

For the tensor analyzing powers the substitution of eq. (60) 
into eq. (56) gives A = —1/2 and therefore 

A, = — 1/2. (62) 

This simple result is interesting to understand. Ayy is equal to 
the polarization component [16] 

Pyy = <3s2-2> (63) 

of the outgoing deuteron beam in a (a ,d) reaction. In a peripheral 
reaction the vector L is perpendicular to the reaction plane and 
therefore either paralle) or antiparallel to the y axis. For L = J 
and because J = L + s,, the spin s, is either parallel or antiparallel 
to the z axis. This is also true for the outgoing deuteron because 

of the spin correlation between the spin one clusters in the a 

particle. Thus in natural parity transitions the (a,d) reaction 

acts as a spin filter supressing the m, = 0 states. In a polarization 

state where m,= +1, < si > = 1/2 and therefore from eq. (63) 

Pyy = Ayy = —1/2. 
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5.2 — Unnatural parity transitions 

In unnatural parity transitions for a fixed J the orbital angular 

momentum of the transferred cluster can be L=J-—1 and 

L=J+1. Again from eqs. (6) and (52) we obtain [12] for 

L=J-1 

Us—ag = (Mo/ V3) I3_4 183-13 + (p/V2) (25 +1)-*(aB/a)? 

(3[J(34+1) JP? Ss4145-(J-1) S5-15) ] (64) 

and for L=J+1 

Users = (U0o/V3) Tyga 0 Ss4a5 + (p/V2) (23 +1)-*(aB/a)? 

(3[J(J +1) 7? Sy-15-(J +2) Ss415)]- (65) 

Given J, the differential cross section is 

(do / dQ); « (1/47) (U5_y5 + Ufsis)- (66) 

Notice that for p —0 

(do / dO); « (02/127) (Wh, S§-a5 + W541 S54i5) (67) 

is insentitive to the sign of the spectroscopic amplitures S,,;. 

Eqs. (64-66) show that, because p is negative, the D-state of 

the a particle has generally the effect of increasing the cross 

section of unnatural parity transitions. This is the case, for 

instance, of a pure L=J—1 transition and also of a pure 

L—=J-+t 1 transition. The opposite effect of the D-state in natural 

and unnatural parity transitions introduces in the cross section a 

J-dependence which qualitatively is in agreement with that 

observed in the 2°°Pb (a,d) 2*°Bi reaction feeding members of the 

{h,,., 8/2 | multiplet [10]. 

We now consider the tensor analysing powers in unnatural 

parity transitions. Eqs. (56) and (59b) give 

(J+2)x-6[J(J+1)}?@x+J-1 
= A= 68 

Ayy = A 2(23 +1)(1+x*) (68) 
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with 

X = Usiis/Us_1,5 . (69) 

Thus A,, varies from a minimum value of — 1/2 for x = [J/(J+1)]}'” 
to a maximum value of 1 for x = —[(J+1)/J]}'”. 

In the absence of D-state effects p = 0 and 

xX = Ky Syyi3/ Sy-15 (70) 

where K; = I;,,/I;_, is a positive quantity due to the form of 
the integrals (50). Eqs. (55) and (68) show that the Ty, have a 

strong dependence on the spectroscopic amplitudes S,,;. Unlike 

the cross section they depend on the relative sign of S;_,; and 

Ss41,3- Fig. 2 shows the values of 

(Ayy 5 = (J-1) /[2(23 +1) ] (71) 

for a pure L = J—1 transition (x = 0) and 

(Ayy Js = (J +2)/[2(23 +1) ] (72) 

for a pure L= J+ 1 transition (x = »). Since K; >0, x>0 

when S;,,5 and S;_,; have the same sign and x <0 when 

Ss41,3 and S;_,, have opposite signs. The quantity x is a double 

valued function of A,,,. x <0 for (A,,); > (J + 2) / [2(2J + 1)], 

x > 0 for (A,,)3 <<(J—1)/[2(2J +1) ] and x is either positive 

or negative for (J —1)/[2(2J + 1)] < (Ay,)3; < (JJ + 2)/[2(23 + 1)] 

as shown in Fig. 2. 

In the presence of D-state effects p = 0 and for a pure 
L = J—1 transition 

K, 33+1—pb(J+2) 
3pb—Ss[J(J +1) ]* 
  

where b=(afa)?/V2. Ina pure L= J+ 1 transition 

[J(Jt1)}” 
=3pb . (74) *= Seb Ky oT 1_pb(J_1) 
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In both cases x <0. Therefore the effect of the D-state is to 

increase A,, relative to the values given by eqs. (71) and (72). 

The substitution of eqs. (73) and (74) into eq. (68) shows that 

the a particle D-state effect is relatively larger in L = J—1 than 

in L= J + 1 transitions. This result is important to select transi- 

tions where the extraction of p from T,, experimental data is 

favoured. 
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Fig, 2— The tensor analyzing power By of (d, a) reactions to unnatural 

parity states as a function of the total angular momentum transfer J. The 

open and full points correspond to pure L=J-—1 and pure L=J-+1 tran- 

sitions, respectively. For each J, Ay, is given by eq. (68) and varies with x 

from -1/2 to 1. For J=1 we have represented in a loop the values taken 

by A,, as function of x. 
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In an unnatural parity transition with only one pair of values 
for J,L the measurement of the Tzq yields a unique value for x 
that can be used to estimate ». Knowing ¢ it becomes possible 
to determine the amplitudes S;,,, and S;-1,3 in transitions with 
L mixing. These amplitudes can then be compared with those 

obtained from shell model calculations. 

6 — CONCLUSIONS 

A general discussion of the angular momentum structure of 
the transition amplitude in (a,d) and (d,a) reactions is pre- 
sented. Particular emphasis is given to the analysis of contributions 
from the D-state components of the a particle wave function. The 
parameter D, is estimated using a perturbative treatment to first 
order in the tensor interaction and gaussian wave functions to 

represent the deuteron and a- particle bound state wave functions. 
These calculations show that D, in (d,a) reactions is sensitive 

to the form of the nucleon-nucleon tensor interaction at distances 

smaller than 2 fm. Further calculations of D, using more realistic 

wave functions with correct asymptotic behaviour are required. 

The dependence of the cross section and of the tensor 

analysing powers on the asymptotic D- to S-state ratio p and on 

the spectroscopic amplitudes S,, is discussed using a plane wave 

peripheral model. The tensor analyzing power Ayy is particularly 

interesting because it is independent of angle and its value is a 

simple function of p and S,,. The present analysis indicates 

that the determination of p from T,, data is specially favoured 
in unnatural parity transitions involving only the orbital angular 

momentum L = J—1. These occur in (d,a@) reactions on closed 

shell target nuclei leading to outstretched nuclear configurations 

with J=L+1. 

With the peripheral model it is possible to identify the main 

features of nuclear structure and D-state effects in the cross 
section and T,,. However the model cannot be applied to the 
description of iT,, and furthermore it cannot be used in a quantita- 

tive analysis of the data. For instance the experimental A,, 

angular distributions oscillate around a certain mean value [5] 

that varies from transition to transition. This mean value can be 
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interpreted with the peripheral model but to reproduce the oscilla- 

tory behaviour it is necessary to perform a DWBA calculation 

including a spin-orbit interaction in the deuteron channel [7, 8]. 

An analysis of recent T,, data in (d a) reactions with full 

finite range DWBA calculations is in progress and shall be pre- 

sented elsewhere. 
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ABSTRACT — Based on the local equilibrium assumption and taking 

as wave function a Slater determinant, the equations of motion and boundary 

conditions for the first sound are obtained from a variational derivation 

based on the quantum mechanical lagrangian, Assuming density dependent 5 

forces, it is shown that in the classical limit the equilibrium density is 

Po (r) = pp (0) @(R-r), where p,(0) is the nuclear matter equilibrium 

density. 

1 — INTRODUCTION 

Giant resonances in atomic nuclei are highly excited states 

in which an appreciable fraction of the nucleons of a nucleus 

move in a coherent manner. 

On the microscopic level the random phase approximation 

provides a very detailed description of collective vibrations. It 

requires, however, a considerable numerical effort, which might 

obscure the simple physical relations pertinent to strongly 

collective excitations. Fluid dynamical methods in application to 

giant multipole resonances [2-11] aim at understanding salient 

features of these collective modes, without entering into the 

complexity of detailed numerical descriptions. 

In order to reach a deeper understanding of the physical 

processes associated with the behaviour of atomic nuclei, it is 

desirable to separate detailed aspects of nuclear properties, which 

often appear due to shell effects, from gross properties depending 

(*) Presented at ‘‘3.* Conferéncia Nacional de Fisica’’, Coimbra, Por- 

tugal (June 16 - June 18, 1982). 
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smoothly on the mass number A. This suggests, therefore, an 

explanation on the basis of fluid dynamical approximations, which 

may be formulated in terms of such quantities as matter and 

current densities, denoted respectively by p and j, pressure 

tensor P,;, etc. 

In this note, we will restrict the discussion to hydrodyna- 

mics [1-3], which is the simplest example of such an approximation. 

In the hydrodynamical case, the main assumption is the use of 

the Thomas-Fermi approximation or, equivalently, that the spheri- 

city of the Fermi surface in momentum space is preserved during 

the nuclear motion. 

Our purpose is to derive the macroscopic equations of motion, 

which characterize first sound, starting from a microscopic basis. 

As wave function we consider the following Slater determinant 

|¢>=exp(iQh-')|¢>  , (1) 

where |¢; > is, among the Slater determinants leading to the 
density p, the one which minimizes the expectation value of the 

energy. Therefore the distribution function, associated to | ¢; >, 
may be written as follows 

f,=O(pi(r)—pP*) (2) 

assuming the value 1 when p} (r) > p? and zero otherwise. In 

this way the Pauli principle is obviously taken into account. 

In order to have an appropriate description of the time 

evolution of the system, we must allow the distribution function 

to acquire time odd components, which is done with the help of 

the time even generator Q. In this note Q is just a local field 

A A 
Q= 3 X(n.t) . (3) 

Since we are interested in the classical limit of nuclear 

dynamics, we restrict our discussion to the leading orders of 

appropriate Wigner-Kirkwood expansions. To avoid cumbersome 

notations, we find it most often convenient to denote by the same 

symbol an operator and its Wigner transform. The density 

matrix ¢ is the only exception. In this case, we denote the 

distribution by f(r,p,t). in order to avoid confusion with the 
density o (r,t). 
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2— THE STATIC PROBLEM 

The equilibrium distribution function f, is obtained by 

minimizing the energy density functional W[f ] 

wif]=f[ ar,f(1) pi/(2m) + (1/2!) fdr dr.f(1) £2) ve 

4 

+ (1/3!) fff arcar. dr, £ (1) £(2) £03) ves chs ” 

and by taking into account the subsidiary condition 

A=farf , (5) 

where the quantities v,., Vio;,..., stand, respectively, for the two- 

body, three-body, ... interactions. A is the particle number and dr 

is given by the following expression 

dr =g dr d’p (27h)? . (6) 

The distribution function describing a system instantaneously 

at rest is given by (2). Since the only quantity on which f, depends 

is p?(r), it is clear that W[f,] may be written as a functional 

of the density p, associated to f,, 

p= {dp (Qrh) he, (7) 

Wif,]=Elpl= dr F(p.) (8) 

where the domain D is the region where p;(r) is positive. 

A simplified hamiltonian with two-body and three-body 5 

forces is considered, 

Vie = to 8 (rn- te) ’ (9) 

Viez = ts S(rn-re) 8 (te- 4s) . (10) 
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For such an hamiltonian F (, ) is 

F (o¢) = (3/10m ) p, pi + a, p; + a, p% (11) 

We choose the following Skyrme parameters: a. — — 408.4 

MeV fm* and a; = 1079.4 MeV fm*. This choice is made in order 

to enable comparision with the results obtained in ref. [3] for a 

calculation of first sound in finite droplets of nuclear matter with 

smooth surface and therefore related to an energy functional 

which includes, besides the volume terms appearing in (11), also 

other terms involving derivatives of the density. 

We now proceed to a general variation of the energy functional 

E taking into account as a subsidiary condition that the particle 

number A remains constant 

8(E-\A) =f d’r 39 (dF/dp —r) 

+ J. dy (8R-n) (F(p)—d 0). (12) 

5R denotes the displacement of the boundary & of the domain 
D and n is the outwards normal. The equilibrium density p, is the 

solution of the following set of equations 

(dF/dp),—p,= A + (13) 

(F(p) oP ron =O (14) 

where R is the radius of the spherical nucleus. 

Equation (13) implies that p, is independent of r. Com- 

bining (13) and (14) it follows that the value of po is obtained 

by minimizing the total energy AF(9)/p, 

(d[p"F()]/dp),-,, = 0. (15) 

This means that p, is the equilibrium density of nuclear matter. 

From now on we will be considering the equilibrium density 

Po(r) = p(0) O(R-r) > (16) 

where the radius R is fixed by p.(0) and A. 

92 Portgal. Phys. — Vol. 15, fase. 1-2, pp. 89-97, 1984



J. P. DA PRoviIDENCIA — Nuclear hydrodynamics 

3 — TIME EVOLUTION 

The distribution function corresponding to the Slater determi- 

nant (1) is 

f=f,+48,,%$ 4+ (1/2)4U, 4h then. (17) 

Assuming that the field 7 is small, we have that the density and 

the current are 

p=g {dp (2rh)f=% , (18) 

j=g [ d’p(27hk)~ f p/m ~(p,/m) vz. (19) 

From the quantum mechanical lagrangian 

L=i#s<¢|s>—<4/H|o> . (20) 

we obtain in the classical limit the following lagrangian for the 

fields % and 9, 

L= fi dir 4 —Zp,—(,/2m) (V%)*—F(,) f , (21) 

where 

<¢|H]de>= fdr FO). (22) 

When we minimize the action integral, we take into account 

the conservation of the particle number by introducing an appro- 

priate Lagrange multiplier \, 

sfdt(L+ad)=faty [ar 3% po, + (1/m) V-(p,¥%) J 

+ [der 89,[-%—(1/2m) (V%)*—dF/do, +] oR; 

+ fy dy 9%, m-(R—(1/m) Vz) 

Mu
 + fy dx (8R-A) [—Zoe—Cpp/2m) (VX)?—F (pp) + Ap]. 
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By considering arbitrary variations of the fields % and »,, the 
following equations of motion are obtained 

o +(1/m)V-(p,V%Z)=0 , (24) 

Z+(1/2m) (V%)? + dF/dp,-r’=0 . (25) 

Equation (24) is obviously the continuity equation and equa- 

tion (25) leads to the ‘Euler type’ equation 

d, §=—(p,/m) V(dF/de,) . (26) 

The two following boundary conditions are obtained 

pp + (p,/2m) (VX)? +F(p,)—Apel pep =O, (27) 

pp (R—(1/m) VX) -njp =0. (28) 

The equations (25) and (27) imply the boundary condition (15) 

at the surface. This means that at the surface p, is equal to p, and 
therefore we recover the well known first sound [1-3] boundary 

condition 

(Plew =O, (29) 
where pf" = ¢,— 6, . 

From equations (24) and (25) we obtain the first sound 

equation for 9, 

0p = (1/m)V-(p,V(dF/dp,)) . (30) 

If we linearize this equation we obtain in the interior of the 

nucleus 

— oy = Ci A es» > (31) 

with the first sound velocity 

c,=(Pp/m) V(I+F,)/3 (32) 
and where the Landau parameter F, is 

F,= (3m/pi) Xa, o(o—1) 9-4, (33) 
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The solutions p(? have the following analytical form inside the 
nucleus 

eo) « j(kr) Ym; (34) 

where j, is a spherical Bessel function and k = o/c,. 

The energies of the first compressive mode according to the 

present formalism are shown, for different values of 1, in the 

following table, for a nucleus with A = 208 and compared with 

the corresponding energies obtained by solving eq. (30) for a 

nucleus with a smooth surface [3] based on a more sophisticated 

formalism, allowing for quantum corrections through the inclusion 

of the so called surface terms. 

TABLE — First sound eigenfrequencies (in MeV ) for the first compressional 

mode for a nucleus with A = 208. The energies in the first line are taken 

from ref. [3], those in the second line are obtained according to the square 

well model density. 

  

  

1=0 =1 1=2 1=3 

18.4 25.3 30.9 35.5 

18.5 26.4 33.9 41.1 

  

4 — CONCLUSION 

In this note we have derived the first sound equations of 

motion and respective boundary conditions, starting from a 

microscopic point of view, where determinants are taken as trial 

wave functions and local equilibrium is assumed. 

Actually the local equilibrium assumption is not realistic for 

atomic nuclei at very low temperatures, because then the mean 

free path \ of the nucleons in nuclei is of the order of the typical 

wavelength R (nuclear radius) and therefore the basic physical 

condition for first sound modes (namely \1<<R) is generally 

not met. It is well known that nuclear giant resonances may 

be obtained in a fluid dynamical picture by means of the generalized 

scaling approach [3-10]. However in order to obtain a description 
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of low lying modes in a fluid dynamical approach, one has to 

go beyond the generalized scaling approach. One possible way 

of obtaining low lying modes is to allow for the interplay between 

first sound and the generalized scaling approach [2, 11]. 

APPENDIX 

In eq. (23) we had to perform a partial integration with 

respect to time leading to a surface term and to a volume term. In 

order to understand how the surface contribution appears, we 
i, 

consider the integral { dt I, d'r G(r,t) such that 

8 [d'rG(r,t) = 8 fdrG(r,t:) =0 (A.1) 
D D 

Then, we have 

fas ferent =. {fara + fae chm) GCr.t) =0 

(A.2) 

and, in particular, if G = 8% », we will have 

ty 4 Py] f° . i % f at} far (aie + 0% 9) + Fax (Rm) 5% 9h —o (A.3) 
t D > 

so that 

f at | Parr ai of — f) at} > farraxe + fash) oof aw 
1 D 1 D s 
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ABSTRACT —In this paper we discuss the influence of a magnetic 

field of the form BL =B,(R/r)ite on the characteristics of a double 

focusing 7/2 sector field polarimeter. The influence of a in the radial and 

axial focusing distances is studied for the energy range 100-1000 keV. 

We conclude that for «40 the anastigmatism of the polarimeter can be 

very important for measurements at several hundred keV whereas it is 

negligible for electrons of a few keV. The effect introduces a systematic 

error which must be carefully estimated in each experimental situation. 

1 — INTRODUCTION 

The experimental results of longitudinal polarization of 

electrons emitted in beta decay have been obtained using different 

methods [1]. One of them, the Mott scattering method, is an 

exclusively transverse polarization sensitive method [2] and, 

therefore, it is necessary to put the electron in a system which 
converts longitudinal into transverse polarization for any electron 

energy. This system is usually known as ‘polarimeter’? and can 

be achieved with a crossed electric and magnetic field configuration 

which, in the neighbourhood of an equilibrium orbit of radius of 

curvature R, has the approximate form [3] 

E,=E, (R/r)*, Eg=E,=0 ; B,—=B,=0 , B,=B, (R/r) (1.1) 

(‘) Centro de Fisica dos Fenémenos de Ionizacéo Interna da Univer- 

sidade de Lisboa. 

(2) Centro de Fisica Nuclear da Universidade de Lisboa. 
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Such an instrument (Fig. 1) has i) independent selection of both 

electron energy and spin orientation at a fixed momentum 

direction; ii) focusing in both radial and axial directions, if the 

configuration field satisfies exactly the eqs. (1.1). The electric 

Ww- -—-R--- 

ee oss 

scatterer 

electrostatic 

lens plates   

  

source 

Fig. 1 — Electron trajectories in a 7/2 sector configuration of crossed electric 

(E) and magnetic (B) fields. 

field can be easily obtained with aid of two concentric spheres 

of radius R, and R, (R.>R,) at the potentials - 4) and ¢o 

respectively. The magnetic field can be produced by a ‘sector 

ring magnet with a radially increasing gap between the pole 

pieces (Fig. 2). The expression B, = B,(R/r) is valid only if the 

magnetic pole pieces are normal to the spheres defined by the 

electric lenses [3], [4]. Usually the magnetic field is of the form 

B, = B,(R/r)!+¢. 

In the following sections these topics are analysed in detail 

with special emphasis on the influence of a on the characteristics 

of the polarimeter. It is a numerical analysis and in the calculations 
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we assume that the angular width of the sector field is 0 = 7/2, 

the real parts of object and image spaces are located in field 

free regions and the distance d, from the object to the entrance 

boundary of the sector field is equal to R (Fig. 1). 

  

  

      

  

  

  

Fig. 2— Schematic view of the pole pieces of the magnet. 

2 — PARTICLES IN PRESENCE OF ELECTROMAGNETIC FIELDS 

Consider the motion of an electron of velocity v = Bc 

(charge —e and mass m = m, (1—£?)~1/?,) under the influence 

of a radial electric field E, in the plane of its orbit and an axial 

magnetic field B, normal to that plane. Assuming cylindrical 
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symmetry the equilibrium trajectory in the laboratory frame is 
a circle of radius R given by [3] 

I/R = 1/p, + 1/ Py (2.1) 

where 

1/p, =e E,W/(c?p?) , 1/p, = eB,/p . (2.2) 

In these equations mc? = ym,c? = W is the total relativistic 

energy and mv = mc = p is the momentum. 

On the other hand, if the angular width of the sector field 

is equal to © the angle between the spin of the electron and its 

momentum changes by [3] 

Ao=—RO/(pey) =—(R/p,) (1-87)? ©. (2.3) 

Eqs. (2.1) and (2.3) allow the conversion of longitudinal into 

transverse polarization for all values of the energy. 

This transverse polarization P of the electrons is determined 

by recording the left-right asymmetry A in Mott scattering from 

spinless nuclei [4]. This asymmetry is A = S P where the Sherman 

function S is known [5]. This function depends on the electron 

energy and the scattering angle. 

The focusing properties of the sector field can be derived 

by studying the electron motion slightly displaced from the 

equilibrium orbit of radius R. The coordinates of the electron 

are Ss, representing the displacement along the equilibrium orbit, 

and y and z representing the displacements parallel to the 

curvature radius and perpendicular to the plane of the equilibrium 

orbit, respectively. For small displacements the equation of motion 

are [6] 

d?y/ds* =—K?(s)y , d*z/ds* = —K? (s)z (2.4) 

where the coefficients Ki,(s) and K? (s) are 

KU (s) =R™* [1 + (R/p, )? (1-8?) ]—K; (s) 

K7(s) = —R-°4(R/p,) [1 + (0 E,/or) =p (E,/R)~*] (2.5) 

+ (R/pm ) (0 B,/dT) Rp (B/R)*}- 
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To determine the position of the electron source and its image we 

apply the usual techniques of electron optics. Assuming that the 

reali parts of object and image spaces are located in field free 

regions and that within the polarimeter the trajectories are deter- 

mined by the solutions of eqs. (2.4), the condition for stigmatic 

imaging is found to be [3] 

1/d, + 1/d, = [K—(Kd,d,)~'] tanKRo (2.6) 

where d, is the distance from the object (electron source) to the 

entrance boundary of the sector field and d, the distance from 

the exit boundary to the image. The condition that the object and 

image distance (focusing distances) should be equal is also obtained 

directly from eq. (2.6), i.e., 

Kd, =Kd.= 7 (KRo/2) (2.7) 

The positive and negative signs refer to negative and positive 

lateral magnifications respectively. When object and image lie in 

their respective real plane, i.e. real images are obtained, the 

positive sign is taken in eq. (2.7) expressing the fact that the 

image is inverted. Thus, if the electric field and magnetic field 

are given by eq. (1.1) and 6 = 7/2 the previous equations show 

that d, =d=R. 

3 — RESULTS 

For a+ 0 eqs. (2.5) become 

Ky (s) = R™? [(R/p, )? (1-8?) —a@ (1—R/?,)] 

K?(s) = R-? [1+ a (1—R/p,)] 

(3.1) 

and the condition for astigmatic focusing is evidently Hy. H's: 12. 

(1—8?) (R/p,)? + 2a (R/p,.) -(1 +2a) =0. (3.2) 

From these equations we see that for «a0 it is not possible to 

have simultaneously the conversion of electron longitudinal polar- 
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ization into transverse polarization and astigmatic focusing. The 

condition d,=d,=R is no longer valid and the distances 

d, (dy, , dg, ) can be obtained from eq. (2.6). Writing 

Kd, =—[2tan(KRo0/2) + Kd, (1—tan? (KR0/2)) ] 

- [l—tan? (KR0/2)—2Kd, tan (KRO/2) ]™ 

the radial and the axial focusing ratios d,,/R and d,,/R can be 

determined as a function of R/p, for a range of values of the 

magnetic field index a. Assuming that 6 = 7/2 and d,=R, 

these ratios were computed for different electron energies. This 

is shown in Figs. 3, 4 and 5. These Figs. are quite general and 

so they can be used to predict the anastigmatism of any polari- 

meter where © = 7/2 and d, = R. The top scale of these Figs. 

gives the Ao values which were calculated from eq. (2.3). 

In all Figs. we see that for a given a the intersection of the 

two curves is an astigmatic focusing point (d), = d.,). To 

each astigmatic point corresponds a value of R/»,. If the electron 

energy is small we see in Fig. 3 that the value of (R/p,) = 1.2 

corresponding to the astigmatic point is roughly equal to the 

value needed to rotate the spin by —7/2. However for higher 

energies (Figs. 4 and 5) this situation is no longer true. 

To further illustrate this point, let us consider an electron 

of 1000 KeV and a = —0.1 (Fig. 5). To achieve a spin rotation 

of —7/2 we need (R/p,) = 2.97 whereas double focusing occurs 

for (R/p, ) = 3.65. In other words setting (R/p,) = 2.97 we 

obtain (d,,/R) = 1.67 and (d,,/R) = 0.61 which means that the 

image of the source rather than being a point is spread over a 

1.06 R region. Obviously, the scatterer must be positioned within 

this region. Clearly, a situation like that implies two things. For 

a scatterer big enough to maximize the number of scattered 

electrons the spread in the electron incoming angles will imply a 

large error in the estimation of the Sherman function. On the 

other hand, if the scatterer is small in order to avoid the previous 

problem then there will be a drastic reduction of the number of 

scattered electrons. This condition implies a large statistical error 
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in the measurements. Fig. 6 shows for an electron spin rotation 

of —7x/2 the anastigmatism of the polarimeter. We see that for 

a given «+0 the anastigmatism is energy dependent. 

4 — CONCLUSIONS 

We would like to emphasize that our conclusions come from 

numerical calculations and they can be summarized as follows: 

(1) 

[2] 

[3] 

[4] 

[5] 

[6] 

Portgal. Phys. — Vol. 15, fasc. 1-2, pp. 99-109, 1984 

1 — To transform electron longitudinal polarization into trans- 

verse polarization by an astigmatic (d,=d,) polarimeter 

we must have a= 0. 

2—The anastigmatism of the polarimeter depends on the 

magnetic field index «, and for a0 the focusing 

caracteristics of the apparatus do not remain constant 

when we change the electron energy. 

3—For small a and low values of electron energies it is 

not critical to know accurately the shape and homogeneity 

of the magnetic field. 

4 — For higher energies and a + 0 the distortions of the image 

introduce errors in the measurements and they are 

energy dependent. 
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APPROXIMATE SOLUTION FOR THE CONCENTRATIONS 

OF IMPERFECTIONS IN A PURE METAL OXIDE MO, 

WITH SCHOTTKY DISORDER 
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Avenida Rovisco Pais, 1000 Lisboa, Portugal 
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ABSTRACT —A description of the defect structure of a pure metal 

oxide MO, with Schéttky disorder in equilibrium with a surrounding oxygen 

gas phase is presented. Appropriate defect reactions are formulated and 

equilibrium concentrations of the different defects as a function of the 

ambient oxygen partial pressure are calculated using the Brouwer’s method 

of approximation. 

1 — INTRODUCTION 

Many inorganic compounds above absolute zero are known 

to deviate from the ideal crystalline state and such deviations 

which may be attributed to lattice defects can occur in different 

ways and to varying degree. According to the Wagner-Schéttky 

statistical thermodynamic model (Wagner and Schottky 1930), the 
structure and the chemistry of nonstoichiometric compounds can 

be interpreted in terms of lattice defects and this has led to the 

concept that all crystalline compounds are inherently nonstoi- 

chiometric to a greater or less degree. In a nonstoichiometric 

compound, generally only one type of point defect predominates 

and electrical neutrality in such a compound is maintained through 

the formation of an electronic or valence defect to every point 

defect. 
A very common situation occurs predominantly in high 

temperature systems consisting of ionic oxides with a Schdttky 
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defect structure in equilibrium with the atmosphere defined by 

the oxygen pressure P(O,). The defects encountered in a MO, 

compound in such cases and their concentrations as a function 

of the oxygen partial pressure of the gas phase in equilibrium 

with the oxide determine a number of properties of (or processes 

in) the oxide such as mass transport, solid state reactions, 

gas-metal reactions, etc.; and if these defect-controlled properties 

or processes are to be interpreted, it is important that the defect 

concentrations are known. The derivation of expressions for the 

relevant defect concentrations as f[P(O.)] is to be the 

subject of this paper. The general character of the arguments 

and the way of presentation follows very much the lines of many 

available papers (Kréger 1974). 

As a basis for those derivations, the remainder of this 

introduction briefly discusses the notation for description of point 

and electronic defects, and the effective charges of the defects. 

In order to describe the point defects which are formed in 

pure crystals and to express their formation in terms of equations, 

different systems have been put forth by Schéttky (1959), Rees 

(1954), Kroger and Vink (1956, 1964), and others. The symbols 

and system used by Kroger and Vink will be employed in this 

paper, as this is being increasingly adopted in the literature. 

The native point defects in an oxide MO, include M and O 

vacancies and M and O interstitial atoms or ions. Vacancies are 

written V with a subscript M or O referring to vacant metal or 

oxygen sites, respectively. Interstitial ions or sites are described 

with a subi. Correspondingly, an unoccupied or vacant interstitial 

site is written V; . 
The point defects often occur in ionized form. In considering 

their charges, one may describe their actual charges or valence. 

However, it is generally more convenient in writing defect reactions 

to consider the charge on the defects relative to the perfect 

crystal. This relative charge is termed the effective charge of the 

defect. 

In addition to the structural defects, crystals also contain 

electronic imperfections, i.e., electrons and holes, which are 

relatively free to move in the crystal. Free electrons and holes 

are usually indicated by e! and h’, e and h standing for electron 
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and hole respectively, the aded dash and dot indicating the 

effective negative and positive charge. 

More complex defect species may be encountered, for 

instance, from an association of two or more single point defects, 

valence defects, etc. In this paper, however, for the sake of 

simplicity, and because this actually applies to a great number 

of pure inorganic compounds at higher temperatures, we shall 

assume complete absence of association of imperfections. There- 

fore, for an oxide MO, with a Schéttky disorder, the only 

allowed oxygen vacancies will be written Vg , with two positive 
effective charges. That doubly charged oxygen vacancies predom- 

inate relatively to neutral or singly charged ones at high 

temperatures is a very well illustrated aspect in papers dealing 

with the individual oxides. 

2— CALCULATION OF DEFECT CONCENTRATIONS 

If a simple MO, oxide contains simultaneously several of 
the imperfections referred in the previous section, their concen- 

trations are interrelated. Since both the stoichiometric and 

nonstoichiometric defect structure situations may apply to the 

same binary metal oxide, depending on the oxygen partial pressure 

of the gas phase in equilibrium with the oxide, we will begin by 

considering a Schéttky defect structure situation in stoichiometric 

MO, oxides, and then, two defect structure situations in nonstoi- 

chiometric MO, oxides, in which predominate either oxygen or 

metal vacancies. It should be noted that the subscript y in the 

MO, formula may be equal to 1/2, 1, 3/2, 2, etc., depending on 

the valence of the metal associated with the oxygen component. 

Stoichiometric MO,, oxides. A stoichiometric compound MO, 

with Schéttky disorder contains y oxygen vacancies per metal 

vacancy. The overall formation of such a defect situation within 

the crystal involves the transfer of an equivalent number of cations 

and anions on regular lattice sites from the bulk to the surface. 

The overall defect equation may thus be written 

2y | oe 
0=Vy +yVo 

where 0 designates a perfect crystal. 
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Applying equilibrium thermodynamics to this net reaction the 

corresponding defect equilibrium may, at low defect concentrations, 

be written 

[Vol [Vac] = Kg 
where Kg is the equilibrium constant. The square brackets indicate 

that the structure elements are expressed in terms of concentra- 

tions. It is obvious that the value of the equilibrium constant 

depends on the units of concentration employed, but it is a simple 

matter to convert values of the equilibrium constant from one 

system to another (Kroger 1974). 

Oxygen-deficient MO,,_,, oxides. For the oxides treated in this 

paper interstitial defects are supposed to be absent, so the com- 

position of a oxygen-deficient MO, oxide may be written MO,., , 
to emphasize that the defects represent a deficit of oxygen relative 

to the stoichiometric composition. 

In these oxides, an oxygen vacancy is formed by the transfer 

of an oxygen atom on a normal site to the gaseous state, without 

any change in the number of sites. This defect reaction may be 

written 

Oo = Vot 1/2 0,4 2! 

where O, designates the oxygen ions on normal lattice sites. 

The defect equilibrium may accordingly be written 

[Vo] P(O,)¥* nt = K’ [Oo] 

where n = [e!] designates the concentration of electrons. 

Metal-deficient M,., O,, oxydes. In a metal-deficient MO, oxide 

a charged metal vacancy may be formed through the reaction of 

oxygen with the oxide 

2y| . 
y/2 0, = Vy +2yh ty Oo ; 

in this reaction both a cation and y anion sites are created in MO, . 

The defect equilibrium may, for small defect concentration, 

be written 

2y | 2y Mi i y/2 
[Vm ]P [900] = K” P(O2) 

where p = [h’] denotes the concentration of electron holes. 
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Intrinsic electronic equilibrium. This process, of thermal 

excitation of electrons from the valence band to the conduction 

band, can be formulated by the reaction 

O0O=el+h 

and leads to the following equilibrium concentration of electrons 

and holes 

np = .K, 

Brouwer’s method of approximation. Summarizing the preced- 

ing considerations, it can be stated that for a pure MO, crystal 

in equilibrium with its vapour phase, in which are present in the 

solid phase atoms M and O, ionized metal and oxygen vacancies, 

electrons, holes, and molecules O, only in the vapour pa the 

following reactions and relations will hold: 

2y | os -_ 2y | 

o=ve't+yvy (VOT Pe Fk (1) 
2: 3 2: y 

y/2 O,=Ve t2yh +yOo [Vy ]p =KP(0)” @) 

6 = 6! + h° np =K, (3) 

It should be noted that the formulations for nonstoichiometric 

MO,., and M,., 0, oxides are equivalent and, as a result, only 

the defect reaction (2) is taken into account at this stage. 

Another basic requirement for treating defect equilibria and 

for evaluating defect concentrations in crystals is the electroneu- 

trality condition. Therefore: 

2y[Vu J+n = 2[Vg]+p (4) 

Since all the constants K are functions of temperature only, 
c 2y| 

the four unknown concentrations n, p, [Vo] and [Var ] can 
be calculated from relations (1)-(4). At any temperature the 

problem is completely determined. However an analytical solution 

is not possible; for instance eqs. (1)-(4) lead to a non-linear 

equation for the hole concentration p 

2y-1 1l/y -l/y 38 -1/2 2 /2 

p [2K, Kp P(0,) +p —K,]=2yK P(O,) 
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Whereas precise calculation of all the concentrations is a 
rather tedious affair, approximate solutions are easily obtained 
if the neutrality condition is approximated by its dominant 
members; this method which is to be our next task, was first 
proposed by Brouwer (1954) for exactly this type of problem. The 

neutrality condition can be approximated in four ways: n.=2 [ V9 ]; 
oe 2y | 2y | 

n=P;[Vo]=y[Vu ]; P= 2y[Vy J. 

The first approximation holds at small values of the oxygen 

partial pressure, corresponding to the predomination of oxygen 

vacancies and the complementary electrons in the oxygen-deficient 

oxide. In this case (range I) the various concentrations are 
given by 

1/3 -1/2: 1/2 2/3 -1/6 
n#2 (i kK kK.) P¢O,) 

-1/3 -1/2 -1/2y 1/2y _ -2/3 1/6 

p=2 (K,; K Kg ) P(O2) 
(5) 

/ -l/2y | 1/2y 2/3 Z -2/3 -1/6 
[Vo]=2 (K,K Kg ) P(O,) 

2y | 2y/3 -y _1/2 2/ 
[Vu ]=2 (K,; K_ Kg) 

3 Pp ( 0, * 

Thus n and [ V% ] will decrease with increasing oxygen pressure, 
2yl rae g 

and p and [Vat ] will increase with increasing oxygen pressure. 

This situation is typical of Ta,O,;, V,O;, ZrO,, etc., over at least 

a large part of their homogeneity ranges. The approximation 
ey : . 2y | 

n = 2[V,] is no longer valid when either p or [Var ] become 

larger than [Vg] or n. Which of these two possibilities will 

occur depends on whether, in range I, p>or< va ]; and 

this, in turn, depends on whether K, > or < Kg. 
For K, > Kg we get a new range (II) in which the neutral- 

ity condition is governed by n = p. Under this condition 

1/2 
n = -p —-K, 

Ke” P(O,) (6) /y 

woi=nK 
= /2 

[Vu ]=K,” K P(0,)” 
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Thus [V,] decreases and rv increases with P(0O,), 
whereas n and p remain constant. This situation is particularly 

important for many oxides in which the intrinsic ionization is 

large and concentration of electron and holes according to eq. (3) 

predominates in the oxide (e.g. CaO-ZrO, ). 

For Kj <Kg, n and p become smaller than [Va] and 

[Vo], respectively. In this case the electroneutrality condition 
2y| - 

can be approximated by y [Vo J=[Vo]. 
Under this condition (range III) 

-1/2(y+1) -1/2 -1/2y(y+1) -1/4 

toy | KEK KR UPOS 

1/2(y+1) 1/2 -1/2y(y+1) 1/4 

pey KK, .  -P(O,) mf) 
1/(y+1) 

(Vol=yIVy 1=(9 Ks) 

In this range n decreases and p increases with increasing P ( O, ), 

whereas [V,] and [Va] remain constant. This situation is 
typical of solid electrolytes in which the Schéttky defects predo- 

minate; a good example may be illustrated by pure thoria which 

exhibits predominant ionic conductivity at reduced oxygen 

pressures. 

The last region holds at very high values of the oxygen 

pressure, corresponding to the predomination of metal vacancies 

and the complementary electron holes in the metal-deficient oxide. 

In this case (range IV) electroneutrality is governed by 
2y| 

ay 1 Ve ] =p, and the defect concentrations are given by 

-1/(2y+1) =I/Cya1) -y/2(2y+1) 

n=K,K (2y) P (Oz) 
1/(2y+1) 1/(2y+1) y/2(2y+1) 

p= K, (2y ) P(O,) 
(8) 

oe 1/y -1/y(2y+1) 2/(2y +1) -1/2(2y+1) 

[Vo] =Kg K (2y) P(O,) 

2y | 1/(2y +1) -2y/(2y+1) y/2(2y +1) 

[Ve ] =E (2y) P(O2) 

These relations are similar to those for range I. Some examples 

of oxides which are metal-deficient at higher partial pressures of 
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oxygen are V.O,, Cu.0, NiO, etc. It should be noted that NiO 

is approximately stoichiometric at lower partial pressures of 

oxygen, which, as mentioned earlier, is in agreement with the fact 

that, depending on the oxygen gas pressure, different defect 

situations may apply to the same high-temperature oxide. 

The advantages of the Brouwer’s compensation mechanism, 

which is typical of all practical discussions about defect chemistry, 

become apparent when more intricate problems are described, in 

particular if solutions under a variety of circumstances are to be 

obtained, and graphical methods (logarithmic plots) can be used. 

In the present case, although the defect chemistry is quite simple, 

the discussion was facilitated by the approximation possibilities, 

leading to equations (5) to (8) which were readily derived. 
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LATTICE DATA 

J. A.M. S. DUARTE 

Departamento de Fisica — Faculdade de Ciéncias do Porto, 4000 Porto, Portugal 
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ABSTRACT — Lattice data on configurational histograms are given 

for three dimensional undirected bond (site) clusters according to cycle 

discriminations and for directed lattice animals with both perimeter and cycle 

discriminations. 

INTRODUCTION 

Configurational studies have remained one of the foundations 

of critical phenomena, ever since their study began, despite strong 

competition from transfer-matrix methods and all the various types 

of calculations spawned by the renormalization group theory. In 

this presentation we are concerned with the statistics of connected 

clusters relevant to the percolation and animal problems, as 

covered in a previous compendium of data [1]. The present 

summary lists results pertaining to both the normal (i.e. undirected) 

and directed problems, and aims to complete the previous illustra- 

tion in the light of both the current knowledge and the significant 

theoretical advances that have occurred in the intervening three 

years. In the domain of normal percolation and normal lattice 

animals these are non-existent (but see [5]). However, for directed 

percolation and the relevant animals exact results now include 

the dominant and sub-dominant singularities for dimensions 

2 and 3, their connection in all dimensions to the value of the 

Yang-Lee edge singularity [2], [3], as well as some multiplicities 

for the most significant lattices in 2 and 3 dimensions [3]. 

In this paper, the normal models are only listed in 3 dimensions 

and we have run as close a parallel as possible with the earlier 
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presentation. The data are therefore divided into 4 groups: 
cyclomatic number distributions (in normal percolation), fixed 
size cycle groupings (normal animals), fixed size directed perco- 
lation groupings and cyclomatic number distributions (directed 
animals). The notation conforms to the one applied throughout 
the previous paper, so that 

s — denotes the number of cluster sites 

b — denotes the number of cluster bonds 

c =b—s-+ 1 denotes the cyclomatic number of a connected 

cluster 

e — denotes the external bond (“energy”) perimeter 

t — denotes the perimeter in the percolation sense 

A — Cyclomatic number distributions in percolation 

In 3 dimensions the weighting of configurations by its cyclo- 

matic number continues to be of interest. In normal percolation 

the weighted Euler’s law acts as a sum rule for configuration 

derivations that include the three indices b, s, and t. In fact from 

the expansions of the moments of the cluster size distribution 

for bond 

k k b t 

<S > = XS Bue P (1—pP) Al 

and site percolation 

k k s t 

<b >= 2 Db Sur P (1—-p) A2 
8; b;.t 

one has for k= 1 

<s > =1-(1-p)’ A3 
and 

1 2 

<b>= 1/2zp A4 

with z the coordination number of the lattice. 

Our results are for the sets of histograms %,, b g,,, for the 

simple cubic, body-centred cubic and face-centred cubic site animals, 

and for %, S g,,_ on the diamond, simple cubic, and face-centred 
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cubic lattices. For the first set we have managed to complete 

valence discriminations on all three lattices (a particularly lengthy 

task for the face-centred cubic lattice). From these the number 

of bonds in a cluster follows through the laws 

ys, =s A5 

Svs, = 2b A6 

where s, is the number of sites with alence v and the summations 

run from 1 to z. Rather than pursue the same line for bond 

percolation we have partitioned the data in [4] according to the 

number of sites in each cluster and weighted them accordingly. 

Equation A3 provides, as usual, a consistency check on such 

manipulations. The task is very easy. On the lower coordination 

number side it can be supplemented, if required, with analyses 

of those few space types whose contribution to the added perimeter 

through the yield factor technique stretches long enough to involve 

an overlap with the contribution of strongly embedded clusters 

of the following cyclomatic number. The cardinal rules of this 

derivation are stated in [1], section D. 

B — Fixed size energy groupings (normal animals) 

The most relevant result applicable is ref. [5], which throws 

light on the structure of the dominant singularities for fixed 

cycle animals. We complete the simple cubic results of ref. [5] 

with the rest of the possible cycle values and add the diamond site 

results for animals. 

Since our previous comments in [1] ‘were written in the light 

of the then current ideas, that basically relied on a logmultiplicity 

for the histogram that would ultimately be linear in the cluster 

size, it is now clear from [5] that only the prefactor and the 

exponent can make the shape of these histograms evolve (the 

multiplicity associated with each cycle value is constant and equal 

to the tree multiplicity). As could be expected, the diamond lattice 

gives no more than a rather faint support to this rule. 
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C — Fixed size directed percolation groupings 

Directed lattice animals have greatly benefited from the 
attention of Deepak Dhar and his collaborators [2], [3], and 
K. De’Bell has derived unpublished 3 and 2 dimensional perimeter 
polynomials as a basis for his calculations of the usual critical 
exponents in directed percolation [6], [7]. In this section we list 
results on the simple quadratic, triangular, simple cubic and 
hypercubic 4-dimensional lattices (site problem). These typically 
add two to three more terms to the susceptibility-like exponent 
series, although further efforts are necessary for a significant 
refining of the p, estimates and the +» values in refs. [6] and [7]. 

These susceptibility series provide consistency checks on the 
present data, while for the total number of clusters [2] and [3] 
furnish further numbers, on the totals of lattice animals with a 
given size. 

Ref. [3] is particularly interesting, since a good alternative 
derivation relies on the use of compact source clusters. Although 
a recursion relation with the generality of that in ref. [3] valid 
for the total number of clusters has not been proposed, the two 
index discriminations required for the perimeter polynomials 
can be written through inspection. Putting gi, as the total 
number of animals from a compact source cluster with length i, 
and using the simple quadratic lattice 

(2) 

Sst. 2 Ss1t41 + Sst Cl 

(2) (3) (3) 
Sst = 3 8532+ Ss4tta + 8st + 2 8s-2, t-4 C2 

(i) os t si 
2 8st P (1-p) = p*i™ C3 s, 

This last equation is very useful. For i=1, it is no more 

than the sum rule for the primary species in directed percolation. 

For higher values of i additional sets of perimeter polynomials 

can be used to either check or substitute the lengthier complete 

polynomials. The configurational work is therefore lessened while 
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parallel series for the moments of the cluster size distribution can 

be obtained by the formula 

k k (i) 8 t 

<s>=258 Bax P CID) C4 
8, 

where equation C3 is implicity contained for k = 0, k = 1 leads 

to susceptibility series (for the exponent y) and the sum rule C3 

provides further coefficients. 

D — Cyclomatic number distributions (directed animals) 

There is no available information on cycle discrimination 

for directed lattice animals and critical properties have only one 

significant point of reference: the result on the correlation 

exponent for two-dimensional trees obtained by Nadal et al. [8], 

by the transfer-matrix technique to a high degree of precision. 

For our studies on the cyclomatic structure of directed animals 

we have combined straightforward counting, compact source 

generation and valence discrimination. Note that unlike the 

undirected models, in the present instance, the bond expectancy 

rule for site percolation and the site expectancy rule for bond 

percolation cannot be used. There are no closure sum rules that 

conveniently test the overall consistency of the discriminations. 

Unlike earlier valence studies there are 3 possible options in 

directed models: incoming valence, outgoing valence and total 

valence. We have made extensive studies — not listed here — on 

outgoing valence and in terms of these the linkage rule for 

cyclomatic number calculations is 

2/2 

=> vs, =b Di 
v=0 

; 

We have used outgoing valence studies on all the simple 

quadratic site problem histograms. For the simple cubic site 

problem only the last two terms have not been checked in this 

way. The data are here presented in a combination of the various 

references presented: thus, the generation of complete bond 
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discriminations from compact sources of length 2 on the simple 
quadratic lattice is obtained by the law 

(2) 

Ssp = Bsn + 2 Sar pa D2 

and other linkage rules can be related in a similar manner (for 
example, on the simple cubic, they will involve the embedding 
of compact sources g®, expanding three-dimensionally, and 
of g@). 

This research was funded at various stages by the Royal 
Society, Academia das Ciencias and INIC (Portugal). The author 
is indebted to N. Rivier for discussions, Prof. J. M. Aratjo for help 

with the manuscript and the Ecole Normale Supérieure Group for 
hospitality during part of the writing. 

APPENDIX 

CYCLOMATIC NUMBER DISTRIBUTION IN PERCOLATION 

A— Simple cubic site problem 

go 2 Xp P&snt 25 240 
10 a 26 15 

s=3 s=7 

13 24 18 6 
14 6 21 480 

s=4 22 4500 
15 24 23 16440 
16 156 24 31488 
17 72 25 39816 
18 9 26 34404 

s=5 27 15408 
17 48 28 3240 
18 420 29 360 
19 936 30 18 
20 624 s=8 
21 144 21 96 
22 12 22 42 

s=6 23 2304 
18 30 24 17196 
20 1536 25 65904 
21 3864 26 154050 
22 5808 27 245040 
23 4824 28 284028 
24 1620 29 245676 
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30 

31 

32 

33 

34 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

"33 

34 

35 

36 

14 

17 

19 

20 

20 

22 

23 

24 

25 

26 

21 

23 

24 

25 

26 

27 

28 

29 

30 

Portgal 

129660 

36816 

5712 

504 

21 

456 

852 

12144 

71448 

283704 

706248 

1332984 

1902468 

2069100 

1770576 

1033824 

362904 

74520 

9216 

A—Body-centred cubic 

s=2 Xp P&snt 
4 

24 

24 

8 

132 

240 

96 

108 

72 

12 

24 

680 

120 

1752 

752 

1560 

1344 

576 

432 
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38 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

Al 

42 

672 

24 

2352 

8181 

58224 

352020 

1232616 

3303642 

6821196 

11207616 

14634960 

15332598 

12894384 

8024256 

3284916 

842694 

136176 

13932 

864 

27 

site problem 

31 

32 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

25 

26 

27 

28 

s=—6 

= 7 

1984 

144 

16 

288 

120 

3736 

1200 

11544 

7144 

14436 

13128 

10684 

10104 

5220 

2400 

1080 

240 

20 

72 

2472 

1080 

125
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29 22608 45 129048 

30 14664 46 47460 

31 70968 47 15792 

32 58032 48 3780 

33 119376 49 504 

34 115872 50 28 

35 129744 s=9 

36 127224 26 — 8 

37 90912 29 504 

38 67320 31 14280 

39 40560 32 15400 

40 16920 33 163152 

41 6888 34 191016 

42 2160 35 909392 
43 360 36 1058856 
44 24 37 3093864 

s=8 38 3628232 

26 56 39 6992304 

28 924 40 8188248 

29 864 41 11147440 

30 21288 42 12390048 

31 17328 43 12844488 

32 139260 44 12532480 

33 129960 45 10577016 

34 457020 46 8330232 

35 455128 47 5920960 

36 926712 48 3536496 

37 997656 49 1925496 

38 1259788 50 930536 

39 1303104 51 354264 

40 1183764 52 113568 

41 1049648 53 31296 

42 757584 54 6048 

43 472896 55 672 

44 282244 56 32 

A — Face-centred cubic site problem 

s=2 Xp P&snt 27 192 
18 6 28 360 

s=3 29 432 
22 24 30 474 
23 24 s=5 
24 60 28 192 

s—4 29 48 
24 12 30 888 
26 132 31 1560 
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32 

33 

34 

35 

36 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

35 

36 

37 

38 

2340 

3840 

5352 

4848 

3384 

66 

264 

1452 

1512 

7938 

10152 

19608 

33792 

44460 

58896 

60828 

45840 

23310 

504 

1056 

3696 

14448 

21672 

56400 

99312 

173712 

264216 

427296 

567432 

658944 

732672 

619608 

394200 

157092 

408 

1008 

9192 

16560 

A— Diamond bond 

b=1 Xs SBgpt 
4 

18 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

37 

38 

39 

40 

41 

42 

43 

ad 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

problem 

b=3 

b=4 

12 
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48504 

139044 

227424 

523392 

894624 

1529868 

2518632 

3795504 

5293128 

7015092 

8158740 

8553690 

8040408 

5828280 

3198216 

1049538 

120 

3096 

9624 

30264 

117120 

238488 

585000 

1324284 

2472480 

4922808 

8433096 

14548080 

23360916 

35586816 

51293712 

68905152 

86741136 

101184072 

105531120 

99223488 

81340632 

51984224 

24993376 

6972840 

88 

455 
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13 

14 

12 

15 

16 

14 

i? 

18 

16 

18 

19 

20 

17 

18 

19 

20 

21 

22 

16 

18 

10 

14 

17 

18 

16 

21 

22 

20 

24 

25 

26 
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b=5 

b=6 

b=7 

b=8 

b=9 

b= 10 

b=1 

b=2 

b=3 

b=4 

b=5 

19 10380 
72 20 99780 

2376 21 22528 
22 416196 

12 23 4152720 
1008 24 9489062 

12474 b=11 
17 120 

168 18 1020 

9984 20 10560 

65488 21 130152 
22 683232 
23 319968 

oa 24 4187592 
25 27118656 

82080 26 49936536 
343791 —_e 

16 10 
540 19 2112 

13572 20 12606 
1280 22 148608 

33180 23 1309032 
605040 24 4556844 

1805440 25 3828032 
26 36671700 

54 27 170927328 
600 28 263195972 

A— Simple cubic bond problem 

Xs SEspt b= é6 

6 23 756 
24 2976 

45 27 2800 

28 39900 

a5 ia ames 332 b=? 

22 108 
12 26 1848 

960 27 18732 
2430 28 30576 

29 3072 
240 EI 128832 

1620 32 591216 
11952 33 1166976 
17802 34 973800 
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25 
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30 

31 

32 

33 

34 

35 

36 

27 

38 

24 

22 

31 

32 

30 

39 

40 

41 

42 

38 

39 

40 

48 

49 

50 

51 

52 

37 

38 

47 

48 

49 

50 

55 

56 

Portgal 

b=8 a7 1696 
504 29 23136 

2646 30 38832 
3264 32 88128 

86112 33 226908 
per 34 1815912 

? sz a 263520 2 
2695248 37 1677600 

7069032 38 9708450 

10558944 39 39865920 
7266429 40 76089120 

b=9 41 92969640 
56 42 54472030 

A— Face-centred cubic bond problem 

b=1 Xs SBspt 57 103536 
12 58 215280 

b=2 59 286704 
72 60 393300 

126 61 321840 
b=3 62 145404 

24 b=6 
128 36 8 
768 46 4080 

1488 47 3240 
1304 48 2520 

b=4 54 4440 
120 55 62928 
480 56 150480 
492 57 255600 

6150 58 261216 
eee) 59 247788 
ee 60 105888 22920 
13695 63 94192 

b=5 64 237720 
48 65 1172304 
96 66 2373616 

7320 67 3740352 
8640 68 5592804 

13080 69 6170472 
7560 70 6544944 
2304 71 4284000 

37008 72 1557962 
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b=7 68 5663280 

45 1200 69 4138092 

46 480 70 1406328 

53 4464 71 1619520 

54 54288 72 3240960 

55 106416 73 13946112 

56 138528 74 27036480 

57 94752 75 52254336 

58 46620 76 75166848 

62 227976 77 100550400 

63 523824 78 119089344 

64 2284800 79 116656896 

65 4064928 80 100660752 

66 5450424 81 55223040 

67 6644232 82 16817664 

FIXED SIZE ENERGY GROUPINGS (NORMAL ANIMALS) 

B— Simple cubic bond animals 

b=1 8sp b=7 

2 3 6 18 
b=2 7 7308 

3 15 8 357987 
b=3 

4 95 b=8 
b=4 7 450 

4 3 8 81981 

5 678 9 3104013 
b=5 _ 

5 48 b=8 
6 5229 7 8 

b=6 8 7958 
6 622 9 895536 
7 42464 10 27511300 

B— Diamond lattice site animals 

s=1 8sp s=5 

0 1 4 91 
s=2 s=6 

1 2 5 396 
s=3 6 2 

2 6 s=7 

s=4 6 1782 
3 22 7 24 
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s=—$§ 

8186 

207 

38199 

1508 

6 

s=10 

180544 

9978 

102 

FIXED SIZE DIRECTED PERCOLATION GROUPINGS 

C—Simple quadratic site problem 

s=1 8; 

2 

17 

16 

1 

13 

50 

32 

10 

58 

135 

64 

5 

57 

214 

346 

128 
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s=9 
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s=11 

s=12 

1984 

1 

862642 

62112 

1146 

16 

4161378 

371001 

10434 

198 

45 

259 

707 

854 

256 

28 

267 

1023 

2163 

2052 

512 

20 

218 

1269 

3681 

6264 

4827 

1024 

10 

181 

1278 

5291 

12360 

17383 
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11170 12 242203 
2048 13 352343 

14 311262 
5 15 128726 

131 16 16384 
1219 s= 16 
6290 7 36 

20136 8 681 
39329 9 6428 
46661 10 37451 
25498 i 148186 
4096 12 411505 

13 784420 
2 14 1005138 

90 15 779932 
1069 16 285572 
6805 17 32768 

27455 s=17 
71686 7 20 

119848 8 508 
121873 9 5741 
57564 10 39233 
8192 1 183464 

12 610686 
1 13 1462141 

56 14 2452215 
881 15 2794187 

6837 16 1922948 
33337 17 629100 

109887 18 65536 

C—Triangular site problem 

Sst 8 6 
1 9 i 

s=5 

2 6 6 

1 7 31 

8 51 

5 9 29 

4 10 8 

1 11 1 

s=6 

1 6 2 

12 vi 22 

15 8 93 
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9 162 14 23596 

10 125 15 18901 

ll 47 16 10084 

12 10 17 3663 

13 1 18 921 

s=7 19 159 

7 15 20 18 

8 77 21 1 

9 293 s=11 

10 523 8 6 

11 485 9 142 

12 241 10 925 

13 69 11 4370 

14 12 12 14317 

15 1 13 35970 

s=8 14 66029 

7 5 15 84536 

8 65 16 74390 

9 291 17 45287 

10 934 18 ‘ 19350 

11 1725 19 589] 

12 1800 20 1285 

13 1098 21 197 

14 407 22 20 

15 95 23 1 

16 14 s=12 

17 1 8 2 

s=9 9 75 

7 1 10 761 

8 40 11 4144 

9 265 12 17096 

10 1078 13 52340 

11 3086 14 125301 

12 5739 15 228005 

13 6555 16 302428 

14 4659 17 286950 

15 2114 18 194685 

16 631 19 95281 

17 125 20 34057 

18 16 21 8960 

19 1 22 1731 

s=10 23 239 

8 20 24 22 

9 199 25 1 

10 1094 s=13 

ll 3925 9 40 

12 10452 10 522 

13 19345 ll 3736 
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  12 17850 ll 2990 

13 66212 12 17429 

14 191545 13 74526 

15 441060 14 255149 

16 794995 15 701740 

17 1083076 16 1565490 

18 1091816 LZ 2796170 

19 810484 18 3886667 

20 444953 19 4116618 

21 182225 20 3294610 

22 56161 21 1994447 

23 13048 22 918464 

24 2267 23 324019 

25 285 24 88006 

26 24 25 18349 

27 1 26 2901 

s=14 27 335 

9 15 : 28 26 

10 348 29 1 

C— Simple cubic site problem 

s=1 8 5t 11 168 
3 1 12 571 

s=2 13 1512 
5 3 14 2334 
c= 15 729 

6 3 s=8 
7 9 10 12 

s=4 11 36 
6 1 12 394 
8 24 13 1554 
9 27 14 4131 

s=5 15 8598 
8 9 16 9099 
9 21 17 2187 

10 126 s=9 
11 81 10 3 

s=6 11 3 
9 15 12 198 

10 69 13 798 
11 219 14 4062 
12 567 15 12285 
13 243 16 26619 

s=7 17 43605 
9 3 18 34113 

10 22 19 6561 
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s=10 

1 

45 

426 

2400 

10122 

34907 

86118 

155874 

204408 

124362 

19683 

13 

153 

1029 

6852 

27480 

98232 

18 

19 

20 

21 

22 

23 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

265065 

548817 

846369 

905424 

443484 

59049 

48 

4717 

3156 

17535 

82128 

274809 

809265 

1832232 

3250473 

4323981 

3838500 

1554633 

177147 

C —Hypercubic 4- dimensional site problem 

s=1 B54 

1 

4 

84 

474 

256 

14 

132 

514 

1236 

2904 

1024 

15 

16 

17 

18 

19 

20 

21 

22 

16 

a7: 

18 

19 

20 

21 

22 

23 

24 

25 

16 

18 

19 

s=7 

s=8 

s=9 
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16218 
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93918 
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16384 
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20 2274 20 224 

21 13746 21 4536 

22 29603 22 13586 

23 103320 23 53986 

24 259638 24 177514 

25 450758 25 439916 

26 655770 26 1196838 

27 é 433320 27 2413458 

28 65536 28 3640140 

s= 10 29 4214016 

18 30 30 2130912 

19 216 31 262144 

CYCLOMATIC NUMBER DISTRIBUTIONS (DIRECTED ANIMALS) 

D —Simple quadratic cycle groupings 

s=3 By 12 105 
2 1 13 18 

s=4 s= 11 

3 2 10 1818 
4 1 11 1860 

ome 12 1073 
4 5 13 356 
5 4 14 98 

s=6 15 6 
. 14 s=12 
6 10 if 4790 
7 2 12 5307 

gam 13 3308 
6 38 14 1277 
7 26 15 368 
8 11 16 63 

s=8 17 2 
7 100 s=13 
8 77 12 12633 
9 34 13 15084 

10 5 14 10087 
s—9 15 4406 

8 262 16 1357 
9 228 17 320 

10 102 18 36 
11 30 so 14 
12 1 13 33364 

s=10 14 42670 
9 690 15 30638 

10 653 16 14532 
1 334 17 5094 
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1291 19 63146 

250 20 19994 

15 21 4988 

s=15 22 955 

88211 23 98 

120348 24 1 

92290 s=17 

47130 16 618500 
es 17 950692 
1182 18 818594 

164 19 479578 

5 20 213949 
s—16 21 74466 

233460 22 20508 

338642 23 4476 

275698 24 734 

151301 25 48 

D— Simple cubic site problem 

s=1 8 sp 12 1 
1 s=9 

s=2 8 74643 

3 9 40245 

s=3 10 11119 

12 i 2037 

s=4 12 108 

49 13 15 

3 s= 10 

s=5 9 336108 
204 10 212505 
33 rel 70752 

s=6 
870 12 16686 

228 13 2097 

15 14 180 

gees 15 18 
3787 sel 
1344 10 1524438 
201 11 1105692 

7 12 427305 

s=8 13 119091 

16722 14 22386 

7467 15 2740 

1641 16 294 

180 17 21 
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ERRATA AND ADDENDA: FRUSTRATED SPIN SYSTEMS 

(Portgal. Phys. 15, 9-54 (1984)) 

AYSE ERZAN 

Laboratério de Fisica, Facuidade de Ciéncias, 

4000 Porto, Portugal 

(Received 19 October 1984) 

The relevant set of symmetry operations on the Potts spins, 

taking q possible values, is not the whole permutation group of q 

objects but the q dimensional cyclic group (see paragraph preceding 

eq. 3.4) which is abelian, and which has the desired property that 

all elements are traceless except for the identity, in a q-dimensional 

matrix representation (see paragraph following eq. 3.8). 

One should stress that the simplest gauge invariant object 

that can be constructed from the gauge variables uv (r,r’) is the 

plaquette function II, ¥, or the matrix product of the gauge 

variables taken around a plaquette. The trace of this object (or the 

quantity ¢,, eq. 3.11) is only one of the q-1 independent scalar 

quantities that can be constructed from Il, y¥. The partition 

function, however, will depend upon all such gauge invariant 
quantities. 

Define the vector 

a 

{= (1 > Il ;) a 

aie B,y Bsyta-l a Y) py a, Py, y=l,..q. 

Note that the first element is just 1/q times the trace itself, and 

> fi, =1. In specifying the frustration configuration, one may 

now specify each of these vectors, as, say, taking the values bp ; 
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Thus, in eq. (3.14) bp should be substituted for the scalar ¢, that 

appears there. Similiarly, eq. (8.17) should read, 

Zigdp$}=Qm % IWS (dp, fo) eXPLK S Yoo (ror’)] 
tut p (r,r’) 

The Kroenecker delta 8 cor f, ) can be expressed conve- 

niently as 

8 (bp >» fy) = oh f, 

and, up to an infinite constant factor, as 

lim exp [K, ¢} f,] 
K,> oe) 

giving, in place of eq. (3.19), (3.20), 

Zigpp=Qy lim & exp[K & po (r er’) +K,& $f fp] 
K,> > 1yt ry’ 

The Duality Transformation given in the Appendix is correct 

for the unfrustrated case (setting all ¢, = 1 in the notation used 
there). The generalization to the frustrated case, however, does 

not follow along the same lines as the Ising model. In particular, 

the statement that it can be accomplished by the replacement 

K,>-—K,/(q-—1) turns out to be incorrect in general. Instead 

of eq. (4.15) one should have, using the following parameteri- 

zation of 

a 

$5. Be, 4 st, 0... G1 and: -r,=4q—r,., 

that: i) in the case of one frustration at a plaquette p dual to 

the site i 

(q-1)"* <a 8,_ 1-1l>—e 
1 

Z {tp #0, all rg (4#p) =O}, x 

Ziallr=O} x x 
Pp 

  = lim 

K,-> [oe] 
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ii) in the case of two frustrations at plaquettes p, q dual to 

sites i, it 

(q-1)7 <(q 87,171) (q as 47 L) > he = 

lim [Z,, {tp#0,1ry=—rp,r,(S#P,4) =OF+(q—2)- 
K,>@ Pp 

Zen ite, tg#—ty.ta(S#P.G) = OF] /Zy,y fall = 07 

iii) in the case of three frustrations at p, q, s dual to i; j ,k 

fg=ly* << 5 (45, a et) SS 

p=i,j,k 

lim [(qa—2) Z,. dtpttrtr=0,7% (t#p,4,8) =0} 
K,> © p 

+(q-1) (Zyy {tp +rTy=9, 1, #0, 1, (t +P, G, 8) =0 ++ permutations) 
Pp 

+(q?—6q+6) (Z,, {rptryt+1,#0, rp tryst 0,1, #0, 1, (t#P, 4, §) 
p 

=0} +permutations)] / Z, , {allr=0} 
Pp 

The cases with more than three frustrations are even more 

complicated. One should be able to invert these equations for the 

partition functions, but this has not yet been accomplished. 

I would like to thank Drs. E.J.S. Lage, L. Banyai and 

Prof. Wegner for their useful comments. 
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ABSTRACT — The equations that give the misfit dislocation content of 

an arbitrary interface are derived from a general formulation of the coinci- 

dence site lattice model of crystalline interfaces. The equations are solved, by 

introducing a ‘‘dislocation content lattice’, to determine the orientation and 

spacing of the dislocations. The results are amenable to a simple geometrical 

interpretation. Grain boundaries are discussed as an application. 

1 — INTRODUCTION 

Arrays of misfit dislocations [1,2] appear in grain boundaries 

between crystals with relative orientations deviating slightly from 

a coincidence site lattice (c.s.1.) orientation. At such special 

orientations the lattices in the two crystals admit a sub-lattice of 

coincidence points. The dislocations are grouped in one or more 

families of approximately straight, parallel and equidistant 

dislocations. Misfit dislocations have been observed by various 

techniques, particularly by transmission electron microscopy, in 

low [3] and high angle [4-6] grain boundaries, mainly in cubic 

metals. In the case of low angle boundaries, the near c.s.1. 

orientation is the perfect crystal. Bollmann [2] distinguishes 

between primary and secondary dislocations; the former occur 

in low angle boundaries and the latter in (other) near c.s. 1. 

boundaries. This distinction will not be made here. 

At the exact c.s.1. orientations, particularly when the degree 

of coincidence % is low (high coincidence; ¥ is defined as the 
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reciprocal fraction of coincidence points) boundaries exist which 

are built up of low energy atom groups (‘structural units’) 

periodically repeated along the boundary [7, 8]. The corresponding 

short period boundaries have therefore a low energy and other 

special properties. The misfit dislocations introduced as a result 

of small deviations from those special or ‘‘favoured’’ orientations 

permit that in most of the boundary area the low energy atom 

groups are maintained [9]. Misfit dislocations can be regarded as 

lattice defects in the so-called DSC lattice; this is defined as the 

coarsest lattice that contains both crystal lattices (in a c.s.1. 

orientation) as sub-lattices [2]. The Burgers vectors of the (perfect) 

misfit dislocations are therefore among the DSC lattice vectors. 

These ideas are inspired by the model of Read and 

Shockley [10] for low angle boundaries. In this case, the special, 

reference orientation is the perfect crystal and the misfit dislo- 

cations have Burgers vectors which are lattice vectors. The 

dislocation content of small angle boundaries, that is, the direction 

and spacing of the dislocations in each family, can be obtained 

from the well-known Frank’s formula [10,11] for a given set of 

three independent Burgers vectors. This formula is easily 

generalized to determine the dislocation content of any grain 

boundary between two crystals which deviate slightly from a 

c.s.l. orientation [5, 12,13]. When the dislocation content is 

known, the contribution of the misfit dislocations to the boundary 

energy can be evaluated , and this may be sufficient to determine 

the variation of energy with the deviation away from a given 

c. s.1. orientation [14]. 

Dislocations with the same role of maintaining as much as 

possible low energy atomic configurations at the interface, may 

also occur at an interface between two different crystals [2, 15-21]. 

The basic ideas of the c. s. 1. model can be adapted to such general 

interfaces, the only difficulty being that c. s. 1. orientations between 

two different crystals (and in fact also between two non-cubic 

identical crystals) only occur if the lattice parameters satisfy 

particular metric relations [22]. Formally, a c.s.1. model of inter- 

faces can then be based on the following points: 

1 — Low energy interfaces should occur for particular values 

of the lattice parameters and of the parameters defining 
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the relative orientation of the two crystals, which 

correspond to a c.s.1l. relation between the two crystal 

lattices. 

2 — When the lattice parameters and/or the relative orienta- 

tion deviate from the exact c.s.1. values, interfacial 

misfit dislocations are incorporated in the interface 

structure. 

3 — The Burgers vectors of the interfacial dislocations are 

among the vectors of the DSC lattice associated with the 

reference c.s. l.. 

In this paper we derive, from the point of view of the c.s.1. 

model, the equations that give the dislocation content of a general 

interface between two crystals. To do this it is of course necessary 

to choose a definite reference c.s.l. relation between the two 

crystals or between two other crystals with different lattice 

parameters. The choice of the reference state is not unique and 

in the derivation we shall not require that the actual parameters 

(lattice and orientation) deviate slightly from those of the reference 

state. However, if the deviation is too large, the spacing between 

the dislocations will be so small to question their individuality. 

The equation derived for the total dislocation content is formally 

identical to the one first obtained by Bullough and Bilby [23] for 

a continuous distribution of surface dislocations and subsequently 

adapted for discrete dislocations at crystalline interfaces [20]. The 

advantage of the present derivation is that it clearly indicates 

the possible Burgers vectors of the misfit dislocations. The 

equation will be solved to obtain the orientation and spacing of 

the dislocations in a general interface. The solution is analogous to 

the one found by Knowles [21] but corrects an error introduced 

in his derivation. The dislocation distribution is related to a 

“dislocation content lattice’ which in turn can be related to the 

c.s.1. of the reciprocal lattices of the two crystals. The range 

of applicability of the c.s.1. model of interfaces is assessed and 

the continuity of dislocation lines in non-planar interfaces is 

proved. The particular case of grain boundaries is treated as an 

example of application. 
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2— DISTRIBUTION OF MISFIT DISLOCATIONS 

2.1 — Basic Mathematical Concepts 

We consider two crystal lattices, L and L’, and choose vector 

bases (e) = (e:, ex, es) and (e’) =(e41, e2, e’3) in each. 
When two crystals with those lattices meet at an interface, there 

is a definite relation between the two sets of vectors, which 

we write in matrix notation as 

[e]=[e] X (1) 

where [e]=[e1, e2, e;] and [e’] =[e’:, e2, e’;] are to be 

regarded as row matrices, and X is a non-singular 3 x 3 matrix. 

X defines the relative orientation of the two lattices and will 

be termed the orientation matrix. The relation defined by eq. (1) 

can be regarded in two ways. First, it defines a coincidence of 

vectors v and v’, one in each lattice: 

v=Xv (2) 

that is, a relation between the components of vy in the basis (e ) 

and those of the coincident vector v’ in the basis (e’). If 4 v {, is 

a column matrix with the e components of vy then eq. (2) is equiv- 

alent to 

{Vv ft. =X" iv te? . (3) 

The second interpretation of eq. (1) is that it transforms a vector v 

of lattice L into another vector v,, the (e) components { v } 

and {v, } of the vectors being related by 

Vv, = X""v ? {Vx fg = 0 4 vt ie . (4) 

It has been established [24] that a c.s.1l. relation between the 

two lattices (that is, the existence of coincident vectors forming 

a 3-dimensional lattice) is defined by those matrices X = C that 

are rational. As shown elsewhere [25] the c. s. l. can be determined 

by factorizing C in the form 

C=N N" (5) 
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where N and N’ are integral matrices with the least possible 

values of |det N| and |det N’|. These values are the degrees 

of coincidence = and >’ for lattices L and L’. A basis of the 

c.s.l. is 

[e] N=[e]N’ . (6) 

The DSC lattice is determined by factorizing C in the form 

C=M 1M (7) 

with the least possible values of |det M| and | det M’|, which 

in fact coincide with > and >’ [25]. A basis of the DSC is the 

set (bo ) = (bo, boe, bos ) defined by 

[b]=[e] M*=[e’] M™ . (8) 

In the following, we shall make use of the metric matrix of a 

lattice. For example, for lattice L this matrix is G = (g,;), with 

8; = e,- e;- The volume of the unit cell is (det G )i/?, Esq. (1) 

implies that 

G=x Gx (9) 

and for given G and G’ there may not be rational solutions X for 

this equation. T denotes the transposed matrix. The reciprocal 

lattice of L, for example, has a basis (e*) given by 

[e*]=[e] G* (10) 

2.2 — Formulation of the Problem 

If the orientation matrix X is not rational, we write X in 

the form 

x=DC (11) 

where C is a rational matrix defining a c.s.1. relation between 

lattice L and another lattice Lj with basis 

[eg] = [e’] D : (12) 
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Li, deviates slightly from lattice L’ and is in a c.s.1. relation 

with lattice L: 

[fe] = [eg]Cc . (13) 

More generally, we could write X in the form X = D’CD™, by 

considering two auxiliary lattices ,[e,]=[e] D and [e]= 

=[e’] D’, associated respectively with L and L’, in a c.s.1. 

relation: [e,] = [e,] C. This is the type of decomposition used 

by Christian [20]. However, for a given X and a chosen C, it 

is always possible to write X in the simpler form eq. (11), which we 

shall use in the following analysis. There are, of course, infinite 

choices for the matrices C and D satisfying eq. (11). As a general 

rule, the physically best choice should be the one for which the 

degrees of coincidence (> and 3’) defined by C are small and 

the deviation defined by D is small (that is, D =I, I being the 

identity matrix). For a given choice of C, we find a basis 

(bo) = (bo, boz, bos) of the DSC lattice in the way described 
above (eqs. (7) and (8)) and choose three arbitrary non-coplanar 

vectors (b) =(b:i, bo, bs) of this lattice. We shall find the 

dislocation content of an interface with unit normal n, assuming 

that the dislocations have Burgers vectors bi, bo, bs. 

We take lattice L as fixed and consider a reference state 

with lattices L and Lj in the c.s.1. orientation, C. As in the 
derivation of Frank’s formula [11] we take an arbitrary vector y in 

the plane of the interface between L and L4. This plane has 
a definite orientation in lattice L, so that no ambiguity occurs. 

When L, is transformed into L’ by means of the operator D, the 

vector v is transformed into D~' y (eq. 4). We now state that the 

difference between the two vectors v and D~'y is the sum, B, 
of the Burgers vectors of all dislocations cut by v: 

B=(I-D"*)¥v . (14) 

This is the basic equation of the formal theories of surface and 

interface dislocations [20, 23]. In the following we shall find the 

solution of this equation in order to determine the detailed 

dislocation content of the interface. The method of solution is 

similar to that of Knowles [21] but a correction is made to an 

error in his derivation, which is in fact valid only when the 

reference lattice is cubic (see below). 
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The interface will in general contain several families of 

dislocations, each family having the same Burgers vector. An 

argument similar to the one used by Read [11] would show that 

the dislocations of a given Burgers vector are parallel and equally 

spaced. Adopting the procedure of Sargent and Purdy [18] we 

therefore define vectors N,, perpendicular to the family of 

dislocations b; and such that the spacing d, between the dislocations 

in the family is 

a=] Rr (15) 
The number of dislocations b, cut by v is v-N, and their 

contribution to the total Burgers vector B is (v-N,) b,. Therefore 

(I-D“*) v= (v-Ni) by . (16) 

This relation holds for any vy such that 

ven=0.. (17) 

2.3 — Determination of the Dislocation Content 

To solve eqs. (16) and (17) we introduce the reciprocal 

vectors b* of the b;, defined by (cf. eq. 10) 

[b*] = [b] G,* (18) 

where G, is the metric matrix of the b,;. The vectors b* belong 

to the reciprocal lattice of the (b,), with basis (b*) given by 

(cf. eqs. (9) and (10)) 

-1_7T 
[bs] = [bh]MG M . (19) 

The lattice (b*) is the c.s.1l. of the reciprocal lattices of (e) 

and (e’) (e.g. [25]). Taking the scalar product of eq. (16) by 

b*, we obtain 

b*¥-(I—-D-') v=v-N, . (20) 
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Next we introduce the adjoint operator of (I—D~') which is 

represented in the basis (e) by the matrix 

Q=G"(I-D")'G . (21) 

This allows us to write eq. (20) in the form 

(N;-Qb¥) -v=0 . (22) 

The vector in brackets in then parallel to n, and since N, is 

perpendicular to n, we finally obtain 

Ni = Qbi—-(Qbi +n) n (23) 

with Q defined by eq. (21). The vector N, is the projection of Q b# 

in the plane of the boundary. In matrix notation, eq. (23) is 

written as 

{N+} =Qibtt—{n} (GQLbEH{ n} (24) 
where { | denotes a column matrix. This derivation leads to the 

same equations obtained by Knowles [21] except for the presence 

of the metric matrix G in the definition of Q. In fact, Knowles’ 

result is only valid when G=I. This becomes apparent from 

inspection of eq. (17) in his paper. 

The general procedure to obtain the orientation and spacing 

of misfit dislocations can be summarized in the following steps: 

1 — Decomposition of the orientation matrix X (eq. 11). 

2 — Determination of the DSC lattice associated with C 

(eq. 8): vector basis (b, ). 

3 — Determination of the matrix Q (eq. 21) and vectors Q b* 

[b*] Q=[b,] MG MQ=[e]G MQ. (25) 
To each Burgers vector b we may therefore associate a 

vector Q b*. 

4 — Choice of three non-coplanar Burgers vectors b in the 

lattice (b, ). 

Portgal. Phys. — Vol. 15, fasc. 3-4, pp. 143-156, 1984



M. A. ForTES — Misfit dislocations in crystalline interfaces 

5 — The direction and spacing of the dislocations with b is 

determined from the projection of the corresponding Q b* 

in the plane of the interface: the dislocations are perpen- 

dicular to the projected vector and their reciprocal spacing 

is the modulus of that vector (Fig. 1). 

IZ
 

  

(a) (b) 

Fig. 1— a) _ The directions and spacing of the misfit dislocations is determined 

by the projection N, of the three vectors Qb* in the plane of the interface. 

b) Effect of orientation of the interface on the distribution of dislocations 

defined by vectors N. 

If the rank of Q is three, the vectors Q b* form a 3-dimensional 

lattice with the basis (25). This lattice can be termed the dislocation 

content lattice. Three families of dislocations with any non-coplanar 

b’s can accommodate the deviation from the c.s.1., for any 

orientation of the interface (Fig. 1). When a particular near c. s. 1. 

relation and a particular interface orientation are considered, it 

is clear that larger Burgers vectors, b, correspond to larger Q b* 

vectors and therefore to larger dislocation spacings. However, if 

the energy per unit length of the dislocations increases more than 

linearly with b, the energy of the interface should increase as b 
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increases. Small Burgers vectors are therefore preferred. This is 

a general tendency, but in particular cases (e.g. for particular 

orientations of the interface) larger Burgers vectors may be 

energetically favourable. Various criteria that can be used to 

choose the more convenient matrix D have been discussed by 

Knowles [19,21]. As a guide to decide the more favourable near 

c.s.l. relation, that is, the one for which the interface structure 

has lower energy, we can use the following simple argument. 

From eq. (25) and the relation between metric matrices, eq. (9), 

it is easily concluded that the volume of the unit cell of the Q b* 

vectors is ¥|det Q|/, where © is the volume of the unit cell 

of lattice L. This quantity is a measure of the average dislocation 

density at interfaces for that particular reference c.s.1. relation. 

Therefore, the best choice of the decomposition (eq. 11) of the 

orientation matrix should be the one for which =| det Q| has the 
smallest value. Broadly, low & values and D ~ I should be favoured. 

However, the energy of the interface is not a simple function of 

the dislocation density, so that the rule has to be regarded carefully. 

Finally, the above result shows that as the deviation from a given 

c. s. 1. relation increases, or the value of & increases, the average 

dislocation spacing (3 | det Q| /)~1/* decreases; the c. s. 1. model 

fails when %|det Q| is of the order of unity. 

If the rank of Q is two, the vectors Q b* are all in the same 

plane, but do not form a lattice except in special cases (see an 

example below). If there is a vector b* such that Q b* = 0 (and 

this may be possible if the rank of Q is two), interfaces of any 

orientation can be described with just two families of dislocations. 

Similar considerations apply when the rank of Q is one. 

2.4 — Continuity of Dislocations Lines 

It is interesting to point out that eq. (23) ensures the 

physically necessary continuity of the dislocation lines, of a given 

Burgers vector, as the plane of the interface changes (Fig. 2). 

This question is important in relation to interface faceting. 

Consider two planes with unit normals n and pn’. Their intersection 

is parallel to n X n’. The orientation and spacing of dislocations 

in each plane is defined by N, and Nj for each Burgers vector hb, . 
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It is assumed that the same Burgers vectors appear in both planes, 

although this is not strictly necessary. Continuity of the dislocations 

b; implies that 

d,;/cose = dj/cos0’ (26) 

where © and 0’ are defined in Fig. 2. Eq. (26) is equivalent to 

IN,- (nXn’){ = |Ni-. Cn Xn’)|. (27) 

  

Fig. 2— The dislocations of a given Burgers vector are continuous when the 

plane of the interface changes from the orientation n to n’. 

It is immediately seen from eq. (23), that this relation holds for 

any n, n’. The dislocations are therefore continuous, even 

when the plane of the interface changes abruptly. 

3 — APPLICATION TO GRAIN BOUNDARIES 

The orientation matrix X is in this case a rotation matrix. 

Then D is also a rotation matrix and the rank of Q is necessarily 

two. The Q b* vectors are all in the same plane. If the rotation 
axis for D is defined by the unit vector u, the plane of the Q b* 
vectors is perpendicular to u. When the rotation angle 0 in D is 

small, the matrix Q is equivalent to the operation defined by 

Q=0u x (28) 

where X denotes the cross product. 
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The Qb* vectors form a lattice in the plane u if and only 

if u is parallel to a lattice direction and perpendicular to a lattice 

plane of the two lattices in the c.s.l. orientation. This is 

immediately seen when Q has the form (28), since in this case the 

operation Q is directly related to the projection on the plane u. 

Those conditions are in general only met in cubic crystals. More 

generally, the Q b* vectors may have their extremities on a family 

of parallel equidistant straight lines or they may fill the whole 

plane when placed at a common origin. 

When u is perpendicular to a lattice plane of the two crystal 

lattices in the c.s.1. orientation, there is a reciprocal b* parallel 

to u and for this Q b* = 0. In this case all grain boundaries may 

contain just two families of dislocations with Burgers vectors in 

the plane u. 

As for a general crystalline interface, the actual dislocation 

content of a grain boundary can only be decided, among all possible 

choices of the reference c. s. 1. and the corresponding combinations 

of Burgers vectors, after calculating the energy of the boundary 

for each set of Burgers vectors. The variation of the energy of the 

boundary with its orientation can then be determined, and the so 

called {- plot constructed. Special orientations, possibly associated 

with cusps in the ¥- plot, will occur when one family of dislocations 

is missing, relative to neighbouring orientations. The special 

orientations are those for which the boundary plane is normal 

to a Qb* vector, which in turn implies that the deviation from 

the c.s.l. orientation is a pure tilt rotation. 

4 — DISCUSSION 

Although misfit dislocations have been observed in a variety 

of interfaces, it is not certain whether they are a general feature 

of crystalline interfaces. The formal theory outlined in this paper 

plausibly admits that they should occur at interfaces which deviate 

slightly from special or favoured orientations containing a high 

density of coincidence points. The misfit dislocations can be 

regarded as line defects in the DSC lattice but this lattice can 

only be defined for c.s.1l. orientations. In most cases, such 

orientations only occur if we allow for changes in the metric of 

the two crystals. However, it is difficult to physically legitimate 
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these changes since they interfere with the stability of the crystals; 
the favoured interfaces are then purely conceptual. 

When coincidence of lattice points does not occur, it is still 

possible to define a coincidence of equivalent points in the two 

crystal lattices [2]. These are the 0 - points and form a translation 

lattice — the 0 - lattice. Bolmann [2] suggested that special interfaces 

are those that contain a high density of 0 - points, but the physical 

basis for this is weak: the 0 - lattice theory is “too” geometrical. 

Nevertheless, the concept of favoured or special interfaces 

of low energy is useful and can possibly be generalized to include 

all those interfaces correlated with cusps in the energy plots 
(or ¥- plots) as a function of the orientation of the interface for 
any relative orientation of the two crystals. A difficulty arises 
in such cases, in that there is not, as there is in the case of c.s. 1. 
interfaces, an obvious crystallographic “state” in relation to which 
dislocations can be defined, although they could still be regarded 
as line singularities in the atomic configuration at the interface. 

The formal theory discussed in this paper and the equations 
derived allow a correct interpretation of the structure of interfaces 

in simples cases, but it is unlikely that their applicability is general. 

Besides, the theory does not identify unambiguously the Burgers 
vectors of the intervening dislocations. The alternative approach 

to the structure of interfaces is the direct calculation by computer 

of the atomic positions, using adequate interatomic potentials. 

A considerable amount of work along this line has been undertaken 

in recent years for grain boundaries [26,27]. But, as expected, 
the approach has little predictive value and the c.s.1. theory of 

interfaces remains the most rational and simple (although not 
entirely satisfactory) framework to discuss the structure and 
properties of interfaces. 
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ABSTRACT — The correlation between the adiabatic splitting AV R,) 

and the crossing distance R, for one electron transfer processes is analysed. 

This is based upon a selection of the experimental and computational data 

actually available, the test of several reduced variables and the correct 

asymptotic behaviour. A simple semi-empirical formula is proposed. 

1 — INTRODUCTION 

The calculation of the transition probability for electron 

transfer collisions of the type 

+n a +(@—1) 

A+B 2A +B (1) 

requires the estimation of the coupling between the two states. 

This applies to many inelastic processes such as charge transfer, 

formation and recombination of ion pairs, chemi-ionization, an 

important part of chemical reactions, collisional excitation, 

quenching and dissociation. The adiabatic splitting AV(R,) 

between the initial and final states is the fundamental parameter 

required to describe these interactions which involve curve 
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Portuguese Physical Society (Coimbra, June 1982). 

* Dept de Fisica, Faculdade de Ciéncias e Tecnologia (U.N.L.), Quinta 

da Torre, 2825 Monte da Caparica, Portugal. 
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crossings. The splitting is directly related to the coupling matrix 

element H,, through [1] 

AV(R,) = 2 |H, — SH,,|/(1—S?) (2) 

where S is the overlap integral and H,, = < ¢?|H,,| $3 > are the 

matrix elements of the electronic Hamiltonian in the diabatic 

representation, ¢) and ¢}. When S~0, then AV (R,)=2 H,,. 
Once one knows the coupling matrix element, the calculation 

of the cross section for the electron transfer process can be 

performed using the Landau-Zener formula 

Py= exp (- V,./V,) Where v,,=27 H?, (R,) /\Fir~ Fas |p, . (8) 

F,, are the derivatives dH, / dR and v, is the radial velocity for 
the angular momentum I, all the quantities being evaluated at 

the crossing point R,. 
Atomic units are used throughout this work. 

2— CORRELATION AV (R,) —R, 

Estimations of the splitting AV (R,) or the term H,, (R.) 

have been obtained either from experimental or theoretical work. 

Experimentally these splittings can be deduced from the 

behaviour of the total, as well as, from the differential cross 

section. However the initial and final states involved have to be 

inequivocally identified. The velocity where the maximum of the 

total cross section occurs is directly related to the coupling 

term [2]. The differential cross section is very sensitive to the 

transition probability and therefore also contains information on 

the coupling but the determination is not so straightforward. 

From the analysis of spectroscopic data, using the Rydberg- 

Klein-Rees (R.K.R.) method, the adiabatic potential curves can 

be derived. These potentials in the neghbourhood of the diabatic 

crossing point allow one to estimate the splitting [8, 4]. 

Theoretically three methods have been used to obtain these 

parameters. 

Calculations using variational methods have been mainly 

performed by Bates and associates in the fifties [5-9]. They studied 
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several charge transfer and ion pair recombination processes. At 

large R, distances, where the multipole interactions are dominant 
the calculations are incorrect [10]. 

The Heitler-London L.C. A.O. method has been also widely 

used. It predicts an asymptotic behaviour of the _ type 

AVi cao ~ eXP [-(v +7) R,] where v= V2Tand j = V2 EA, 
I and EA being respectively the ionization potential and the 

electron affinity or, in general, the higher and lower electron 

binding energy of the collision partners. At large crossing distances 

this method becomes also incorrect since the perturbation is as 

important as the zero order interaction [1]. 

In the Landau-Herring method, the exchange interaction 

A = 2|H,.—SH,, | is expressed as a surface integral of the transient 

particle flux in the configuration space of electronic coordinates. 

Several calculations have been performed using this asymptotic 

method [10-12]. They differ in the choice of the integration 

conditions and characteristics of the collisional systems. This 

method provides the means of obtaining the asymptotic 

behaviour [10] of the correlation AV — R, which turned out to be 

AV iy ~ exp (-vR,). 

The first correlation H,,-R, was presented by Hasted and 

Chong [13]. Table I shows several theoretical and semi-empirical 

relations which, since then, have been forwarded. Of these, the 

formula of Olson, Smith and Bauer (O.S.B.) [16] is the one 

which has been the most extensively used although it does not 

have the correct asymptotic behaviour. The expression was 

obtained from a fit with almost one hundred theoretical and 

experimental points available in the literature up to 1971. 

The relation proposed by Hubers, Klein and Los (H. K. L. ) [17] 

is a generalization of O.S. B. but it has been derived from experi- 

mental fits only for alkali atom-halogen molecules. It has more 

adjustable parameters than the O.S.B. expression, however the 

exponential dependence only on vR, resulted from the best fit. 

Actually the data available for electron transfer, both in 

atom-atom and atom-molecule, rose to more than two hundred 

points. Most of them are theoretically estimated. Those experi- 

mentally derived are about one fifth of the total and are confined 

to high AV i.e. large coupling and small crossing distances. The 

collision processes analysed are listed in Table II and plotted in 
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Fig. 1. The adiabatic splitting ranges for about 10 orders of 

magnitude when R, ranges only less than two orders. From the 

theoretical data available were excluded those splittings extra- 

polated from formulas although some of them were taken in the 

TABLE I— Proposed relations for the H,, or AV dependence on R, 

(atomic units ) v= V2 y= V2EA 

  

H,, =R, (v?/2) exp (-»R,/ V2) (for H+ + H) 
Rapp and Francis [14] 

  

    
eet ita 25 my y (t44) iy 

2 e TY [O1/) +041] T PClyn)-1] 

RI? OT exp [- (+7) R/2] 
Smirnov [12] 

(A is a constant and 1 is the orbital angular momentum) 

  

a, = y capt? + 1 RI)” ~ 1 exp (= »R,) 

T(1/) 
Komarov [11] 

  

H,, = 7? [8.0 exp(— 0.91 yR,) — 7.5 exp ( — 0.99 yR,)] 
12 

OLSON, PETERSON and MosELEy [15] 

  

H*, = 1.0 R* exp( - 0.86 R*) Ht,=H,,/vy , R*=(9+7)R,/2 
> 

OLSon, SmiTH and BAEuR [16] 

  

AV = exp [( R° — R,)/ AR] (R,, AR are parameters ) 

GrIcE and HERSCHBACH [3] 

  

H** = 1.73 R** exp(- 0.875 R**) , H*¥*=2H,,/vy , R**=eR, 

’ HuBERS, KLEYN and Los [17] 
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A. M. C. MouTINHO — Coupling in one electron transfer processes 

work of Olson et al. Although an exponential decrease is in general 

observed, one notes a divergence with increasing R, that depends 
mainly on the electron affinity. This divergence is not clear in the 

experimental data plot and therefore it is probably related to the 

method of calculation (Fig. 1). 
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= +     ro"? LEtLi litt lipid iit tipi 
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R.fa.u.) 

  

Fig. 1— Experimental (+) and theoretical (e) splittings, AV, as function 

of the crossing distance R, - 

In order to get a simple relationship, several reduced variables 

(X, Y) have been tested. This was done assuming always an 

exponential relation 

Y = a exp (—b X) (4) 
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TABLE III — Correlation AV -R, with reduced variables 

Y =a exp (-bX) o — standard deviation (atomic units ) 

  

  

    

    

    
  

  
  

  

      

  

      

  

  

    

  

  

  

  

    

  

Fe Set 1 Set 2 Set 3 
Pair x Y Obs. 

&, s a b o a b o a b o 

I] »R, AV/» 5.95 | 0.86 |0.521] 0.69 | 0.52 |0.366|0.14 | 0.26 |0.308 

| Il} »R AV/v2 9.16 | 0.85 |0.509] 1.48 | 0.59 |0.345|0.25 | 0.32 |0.265) Simple 
© expression 

I} »R, AV/pX )1.54 0.94 |0.479] 0.25 | 0.64 |0.363|0.054/ 0.39 |0.311 

IV} >R, AV/y?X 2.37 | 0.93 |0.463) 0.54 | 0.71 |0.341|0.093| 0.45 |0.271 

Vi} »R, | AV/(+? R,tv-1) | 2.26 | 0.96 |0.981| 0.18 | 0.45 |0.563/0.045| 0.17 |0.510 a 

| VI} »R, AV/y 12.0 | 0.89 |0.492! 1.93 | 0.60 |0.369|0.34 | 0.32 |0.315 

vil] »R, AV/y? 37.3 | 0.91 |0.504] 11.7 | 0.75 |0.425|1.36 | 0.45 |0.400 

vill] »R, AV/y X 3.10 | 0.97 |0.458| 0.70 | 0.72 |0.370 0.13 | 0.45 |0.321 

Ix| »R, AV/v? X 9.64 | 0.99 |0.478) 4.22 | 0.87 |0.428|0.51 | 0.58 |0.409 

X} »R, AV/>y 18.5 | 0.88 |0.497| 4.16 | 0.67 |0.375|0.58 | 0.39 |0.322 

xt; »R A x | 4.77| 0.96 |0.460) 1.50 | 0.79 |0.375\0.22 | 0.52 0.330 | 2: © c V/vy . . . . . . . . . revised 

XU} 7R, AV/y2 4.18 | 0.89 |0.433| 1.71 | 0.67 |0.336/0.59 | 0.45 |0.316 

v+y 
xmmt| — Mi ey 6.43 | 0.87 |0.458! 1.70 | 0.64 |0.337|0.41 | 0.39 |0.290 

xiv| 7% 2.00 | 0.96 |0.412| 0.76 |'0.78 |0.342/0.18 | 0.54 {0.311 | O- 5: B- " AV/v yX A : : : : i . , : covtsed                         
  

Set 1— Computational and experimentally derived data; 

Set 2— Partial set (see text); Set 3 Experimental derived data. 
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the constants being derived by least square fits (Table III). The 

standard deviations, « , were used to compare the different fits. 

The exponential dependence of AV upon R, is suggested by the 
exponential tails of the orbitals. 

Although the experimental points (set 3) are not numerous 

and are confined to splittings larger than 10~* Hartree and R, 
smaller than 20 a.u., they show a general exponential decrease 

expressed by 

  

  

    
  

AV = 0.21 exp (— 0.29 R,) (5) 

ett ote e it  ? oP,  e 

my 
@ 

+ 107! 

> 
| 

fo72 

107° 

1074 

or? Ltt dd 
0 10 20 30 

R, (a.u.) 

Fig. 2— Correlation AV—R, obtained with the available experimental data. 

The fit (Fig. 2) has a standard deviation of 0.222. It is smaller 

than the other ones obtained with reduced variables for the set 
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of experimental derived data. Almost all the points lie within a 

factor of three to the average line. 

Most of our effort was focused on relations with the correct 

asymptotic behaviour because, to our knowledge, general fits of 

this type have not yet been obtained. Also with that in mind a 

selection of theoretical data has been tried. In fact, at very large 

distances either the L. C. A. O. or the old variational data seem to 

be incorrect. Therefore, fits have been obtained with a partial set 

of experimental and theoretical data (set 2) which excluded those 

points computed by the referred methods and corresponding to 

crossings larger than 8A. This limit was arbitrarily chosen but 

it is reasonable since at larger distatices the relative errors 

increase [1]. 

The so much used O.S.B. relation has been also revised, 

although it misrepresents the asymptotic behaviour as was already 

referred. Indeed it is interesting to include all the data, which 

doubled after that work. One can see that, both the total set 

and the partial one give clearly good fits but the exponential 

constant has to be somewhat changed. With the total set the 

expression is now 

AV _ 90 exp (—0.96 X) with X= 214     R. (6) 
uy 

and is represented in Fig. 3. About 90 % of the data lie within a 

factor of three, as in the early fit. 

Fits with small deviation were obtained with (X= yR,, 

Y=AV/v?X) or (X =7R,, Y=AV/vy) but they have the 

drawback of a wrong asymptotic behaviour. 

The H.K.L. relation [17] has been derived only for the 

systems M + X, and M + XY (13 points) and gives an excellent 

fit. Moreover it has the advantage of having the correct behaviour 

at large R,. However, when tested with the complete and partial 

sets of data, the constants have to be changed and the deviations 

become larger. 
For the selected set of data. the other fits with KX =v Re 

show deviations almost of the same order (except for the Komarov 

type expression) being slightly smaller for the reduced variables 

Yry =AV/v?X and Y,,=AV/»?. These pairs of reduced 
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variables have also the advantage of avoiding the use of electron 

affinity which is of particular importance for molecular systems 

with near zero or negative electron affinity. The second pair has 

  

1072 

a
v
/
v
 ¥x
 

1074 

1076 

1078 

tom"?     1 0712 
    

) 

Fig. 3— Fit with Olson, Smith and Bauer (O.S. B.) reduced variables, using 

the total set of data. 

the advantage of being quite simple and also has a small deviation 

when tested with the experimental set. With the partial set of 

data it corresponds to the relation 

AV = 1.48 v? exp (— 0.59 v R, ) (7) 

166 Portgal. Phys. — Vol. 15, fasc. 3-4, pp. 157-168, 1984



A. M. C. MouTINHO — Coupling in one electron transfer processes 

The simple relation (7) is shown in Fig. 4 together with the 

selected set of data. One notes that it is a reasonable one and, 

like the O. S. B. expression, most of the data are within a factor 

of three. 

  

2 

407! 

AV
/D
 

1077 

103° 

1055 

1072 

107°       
30   

Fig. 4 — Plot with the reduced variables (7 R, , AV/v?) for the selected 

set of data. 

3 — CONCLUDING REMARKS 

Exponential relations involving reduced variables are 

particularly suitable to represent the correlations AV—R,. The 
experimental derived data show a general exponential decay which 

is acceptable within errors. From several variables tested, one 
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concludes that, within the errors, they do not differ so much. 

From those with the correct asymptotic behaviour the set 

(vR,, AV /v?) is favoured because it is the simplest. 

The autor thanks Prof. M. F. Laranjeira, as well as 

Dr. M. J. P. Maneira and Eng.° A. J. F. Praxedes for their interest 

in this work. 
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TRANSPORT PROPERTIES OF n-TYPE FERROMAGNETIC 

SEMICONDUCTOR HgCr2Sey (*) 

J. L. RIBErRO (‘), M. RENATA CHAVES (*), J. M. MoreIRa (?), 

J. BESSA E Sousa (?), A. SELMI (*) and P. GIBART (*) 

(Received 8 November 1984) 

ABSTRACT — Temperature dependence of the electrical resistivity (¢ ), 

its temperature derivative and Seebeck effect were used to study the ferro- 

magnetic transition in a HgCr,Se, sample with n-type impurity. The Hall 

voltage has been separated in the so-called normal and extraordinary Hall 

contributions. 

1 — INTRODUCTION 

The chalcogenide spinel HgCr,Se, is a ferromagnetic semi- 

conductor in which the Cr*+ ions occupy the octahedral sites 

and the Hg?* ions occupy the tetrahedral sites [1-4]. It undergoes 

a ferro-paramagnetic transition at about 110 K [1, 3]. The magnetic 

properties arise from the interaction of localised Cr*+ electrons 

with free electrons [1]. A competition between the opposing 

ferromagnetic super-exchange Cr-Se-Cr and antiferromagnetic 

super-exchange Cr-Se-Hg-Se-Cr also plays an important role in 

the magnetic properties of HgCr.Se, [5]. One of the most 

striking features of ferromagnetic chalcogenide spinels is that 

their absorption edge shows anomalously large shifts as the 

(*) This work was partially supported by Junta Nacional de Investi- 

gacdo Cientifica e Tecnolégica under research contract n.° 160.79.27, by 

Instituto Nacional de Investigacéo Cientifica and Gesellschaft fiir Technische 

Zusammenarbeit (German Federal Republic). 

(‘) Departamento de Fisica, Universidade do Minho, 4700 Braga, Portugal. 

(?) Laboratorio de Fisica, Universidade do Porto, 4000 Porto, Portugal. 

() Laboratoire de Magnétisme, CNRS, 1 Place Aristide Briand 92190 

Meudon Bellevue, France. 
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temperature falls very low [6-8]; for example HgCr.Se, absorption 

edge is 0.80 eV at room temperature and shifts to 0.27 eV at 

liquid helium temperature [7]. The temperature dependence of the 

absorption edge is non-linear, being remarkably high around the 

critical temperature (T,) and nearly constant in the temperature 
range 180-300 K [7]. HgCr.Se, exhibits anomalous electrical 

properties strongly dependent on the heat treatment of the 

sample [1]. HgCr.Se, can be obtained by vapour transport reaction 

using Al + Cl as transport agent. HgCr.Se, annealed in Hg is a 

n-type semiconductor in the whole temperature range studied [1]. 

In the following we present an experimental study of transport 

properties (electrical resistivity, Hall effect and Seebeck effect) 

as a function of the temperature in a n-type HgCr.Se, sample 

with a very high concentration of free electrons. This study aims 

at correlating the electronic properties of HgCr.Se, with the 

anomalous temperature dependence of its gap width in order to 

obtain a better insight into the magnetic properties of that 

system. 

2 — EXPERIMENTAL 

The n-type HgCr.Se, sample we have studied was annealed 

in Hg. Its dimensions are 2.5 X 2 X 1.2mm and its resistivity is 

202 mQcm at 273 K. 

Very accurate measurements of electrical resistivity were 

obtained with a 4 wire potentiometer method using a d.c. current 

with stability better than 5/10° [9]. The voltage resolution in the 

detector was + 107? »V. The Hall effect was measured with a 

lock’ in a. c. technique [10]. The Seebeck coefficient was measured 

by the hot-point method using a copper-constantan thermocouple 

with a measuring junction of 0.1 mm in diameter [11]. The voltage 

resolution in the detectors is + 107? y»V. 

3— DATA ANALYSIS 

As shown in figure l(a) the electrical resistivity (p )of the 

n-type HgCr.Se, crystal has an unusual temperature dependence, 

increasing as the temperature rises. The temperature derivative 

(de/dT) of the resistivity is obtained by a sliding average 

rule [12]. This derivative reaches a maximum value at about 124K 
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and as usual we take this temperature as the critical temperature 

(T,) —figure 1(b). A minimum in d¢/ dT occurs at around 180 K, 
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Fig. 1— Temperature dependence of reduced resistivity (a) and thermal 

derivative of resistivity (b) of HgCr,Se,. 
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Fig. 2— Temperature dependence of thermal derivative of resistivity 

near the critical temperature, T= 124 K, in an enlarged scale. 
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followed by a pronounced increase in de/dT. The temperature 

derivative of 9 displays a striking asymmetric behaviour around T, 

(figure 2). These results are quite similar to those previously 

reported although this asymmetric behaviour was not explicitly 

referred [13]. 

According to a model of spin-polarized bands, the exchange 

interaction between localized and band electrons results in a spin 

splitting of the conduction and valence bands [14]. In a first 

approximation the corresponding energy changes for each band 

are given by: 

<a = - i S Jp ih 
2 M(0) 

  

where §S is the localized spin, J,, the exchange parameter for the 
b-labelled band, M(T) the magnetization at the temperature 

T and +1 refers to the spin up or down. Let us suppose that 

changes in free carrier mobility are relatively small and so the 

anomalous variation in the electrical resistivity at the critical 

region is mainly due to concentration variation. Using this 

assumption and assuming the existence of a donor level of 

activation energy E,(T) we have 

e(T) = 0, exp (—E,/k,T) 

It seems plausible to assume that the activation energy of impurity 

levels varies with the temperature, accompanying the variation 

of the gap width. For simplicity sake let us suppose that 

E,(T) =E,—E,M(T), E, and E, constants. The temperature 

derivative of log ep becomes 

doe 1 (E,—E,M) 4 E, }dM 

ars ' kgT) dT 
  

  

d kp T? >
 | 

Near the critical temperature M(T)=0 and then we have 
approximately 

(1/9) do/dT « dM/dT 

An anomalous behaviour of (dp /dT).(1/ 0) similar to 

|dM/dT| is predictable in the critical region and so the 

asymmetric behaviour in dp/dT must be closely related to the 

asymmetric behaviour indM/dT. In figure 3 we have a plot 

of (dp(T)/dT) (1/p(T)) versus T. 
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As the gap width (E,) variation follows the magnetization 
variation, related to E,(T), it is natural to expect that p (T) 

is associated with E,. In fact log p has a roughly linear 

dependence on E, from 90 to 200 K, as can be seen in figure 4. 
A fitting of the experimental values in the ferromagnetic 

region to the expression (dp /dT) =A-B log |«| where A 

  

      
  

Hage , (200K) 
(arb. un.) 

L 2 

t- 1 

Lo 

| | 
04 og “gv 

Fig. 4— A plot of log p versus the gap width (E, ). 

and B are constants and « = (T—T,) /T,, defines T, = 123.7 K, 

but it was not possible to fit the experimental data in the 

paramagnetic region near T,, to such an expression. The log p as 

a function of the reciprocal of the temperature (figure 5) exhibits a 

complicated behaviour. In the high temperature region (T 2 200K ), 
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Fig. 5—A plot of log p versus the reciprocal of the temperature. 
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Fig. 6—A plot of log p versus the reciprocal of the temperature 

in the range 170-300 K. 

from the slope of the straight line we deduce a value of 0.071 eV 

for the activation energy of impurity levels in the 200-300 K 

temperature range (figure 6). 
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Fig. 7— A plot of the Hall resistivity (1H ) versus the applied magnetic 

field for HgCr,Se, at 77 K. 

We consider now the Hall voltage measurements performed in 

the same HgCr.Se, sample. As is well known, in an applied magnetic 

field (H,) and for a magnetic single carrier semiconductor the 

Hall voltage is given by Vy =(R,B+ R, », M)I/d, where R, 

is the ordinary Hall coefficient R, =(ne)~', n being the 

effective density of conduction electrons, B the magnetic field 

inside the sample, R, the extraordinary Hall coefficient, M the 

magnetization, I the intensity of the electric current, d the 

thickness of the sample and », the magnetic permeability of 

vacuum [15]. In figure 7 we have a plot of the Hall resistivity 
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(oy = Vy 4/1) as a function of the applied magnetic field when 
the sample is at 77 K. The onset of the saturation of the 

extraordinary Hall effect occurs for Bg = 0.15 Tesla. This is the 
typical behaviour for the magnetic field dependence of the Hall 

voltage in the spinel system. An order of magnitude of the free 

electron concentration (n) at 77 K can be calculated from the 

slope of the straight line of figure 6; its value is approximately 

1.9 X 10° cm~* (the corresponding mobility for free electrons 

is 31 cm? V~t s-1). That value agrees with 3 x 10'° cm~ 

predicted for T, = 124 K from the law T, « n‘/* [4]. 

We have plotted the Hall resistivity (py) as a function of 

the temperature in figure 8, for an applied field of 0.97 Tesla. 

  

='8 

CH 
(108 a.m) 

  

    100 200 T(K) 
  

Fig. 8 — Temperature dependence of Hall resistivity ( PH) for HgCr,Se, 

under an applied magnetic field of 0.97 Tesla. 

0; iS approximately constant between 77 and 180 K and there 

is no significant anomaly around T,, although appreciable ‘noise’ 

exists near this temperature. These instabilities can not be 

associated with experimental errors. A plot of py, versus p 
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(figure 9) shows that above 160 K the Hall resistivity is propor- 

tional to p. This is due to the fact that in the higher temperature 

region the total Hall voltage is essentially equal to the ordinary 

voltage (M(T)=0) and according to the previous assumption, 

the mobility variation with the temperature is not relevant (at 

least for T > 160 K ). For T = 250 K we obtain, n = 8 X 10*7 cm~* 

and » = 28 cm~? V~' s~', using the experimental values of Ro 

and ¢, and the formulae R, = 1/ne, p = Ro/p. 

Assuming, as before, that in all the temperature range studied 

mobility variation is much smaller than the variation of free 

  

  

| ; j e(arb.un.)       

Fig. 9—A plot of Hall resistivity (@y ) versus resistivity (p) for HgCr,Se,. 

electron concentration [16], we have made a rough calculation to 

separate the extraordinary from the ordinary Hall resistivities. 

We have taken the ordinary Hall resistivity as proportional to the 

electrical resistivity; extraordinary Hall resistivity was derived 

by subtraction. The extraordinary Hall voltage as a function of 
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the temperature is shown in figure 10(a). An occasional cancel- 

lation of the ordinary and extraordinary Hall effects overshadows 

an anomalous behaviour of the sample around T,. We have also 

used the law of variation of electron concentration with the 

  

Cy 
(10° 2.m) 

    250 TKK) 
  

  

Fig. 10— Temperature dependence of Hall resistivity (-); ordinary (A) 

and extraordinary (4, curve a) Hall resistivities calculated from electrical 

resistivity and total Hall resistivity data; ordinary (0) and extraordinary 

(e, curve b) Hall resistivities from optical measurements. 

temperature, determined by optical measurements in a n-type 

HgCr.Se, [16], to separate the extraordinary and normal Hall 

resistivities. By using that law we derived the extraordinary Hall 

resistivity seen in figure 10(b). The results obtained are similar to 
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each other and clearly point to the existence of an appreciable 

magnetization in a large temperature range above T,. 

Fig. 11 displays the Seebeck coefficient (S) as a function 

of temperature for HgCr.Se,. It is negative in the whole 

temperature range studied, as expected, and |S| increases as. 

the temperature increases. |S| is rather low and an order of 

magnitude smaller that the value reported for CdCr.Se, [17]. The 

room temperature value we found agrees quite well with corre- 

  

200 T(K) 300 

I-10 

‘\ 
90 

r- -20 

(pV.K7) 

[ ~30       
Fig. 11— Seebeck effect (S) as a function of the temperature. 

sponding values previously reported for HgCr.Se, [2]. As we shall 

see, the values obtained for S can be well understood by assuming 

that, above 200 K, HgCr.Se, is a semiconductor and below this 

temperature it behaves like a metallic system. 

For a metallic system S(T) = —(3/2 + q) 7? ki T/(3y/e|), 

where 7 is the Fermi level and q is associated with the relaxation 

time [18]. As » = (h?/2m) (37?n)?/? we have logn(T) = —3/2 
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log |S(T)|-+ const, by neglecting q. In figure 12 a plot of 

the experimental values of log po versus log |S| gives a straight 

line, below 150 K, with a slope 1.6, approaching the theoretical 

value 1.5 (predicted in the above model) fairly well. Accordingly, 

for T = 150 K we have 7=0.5 eV. Above 180 K, log p varies 

  

    

  

(150K) 

& (100K) a | 2 4 tog ISI       
Fig. 12— A plot of log p versus log |S|. 

linearly with |S| as we can see in figure 13. This is the result 

obtained from a simple model used in the study of a non-degenerate 

single carrier semiconductor with parabolic bands. In this case the 

Seebeck coefficient is given by [19]: 

S(T) =—(kp/|e|) | (5/2 +4) + 1/(KpT) | (1) 
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Fig. 13 —A plot of log p versus the Seebeck coefficient (| S|). 

where q = —1/2 for acoustic mode scattering, while q = 3/2 for 

scattering by impurities. If g(E) represents the state density 

for electrons and f(E) the Fermi distribution 

foe) — 

n(T) =]. g(E) f(E) dE = 42 (2m/h? )*Vx/2 exp (—7/KpT ) 

(2) 
Replacing (2) into (1) we have: 

S(T) =-(Kgp/|e|) - |(5/2 + q) —logn(T) + const | 

Using the assumption p (T) «n(T)~', we obtain 

S(T) =C log pe (T) + const, 

where C is constant. 
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It is quite interesting to remark that the variation of the Fermi 

level, which is associated with the Seebeck coefficient as we have 

just seen, follows the variation of the gap width (figure 14). 

  

    
  i 

04 og FgleV) 

Fig. 14—A plot of log |S| versus the gap width (E, ). 

Log|S| versus E, is a straight line between 90 and 200 K. The 
results concerning the Seebeck coefficient confirm the major 
importance of the electron concentration on the electrical proper- 
ties of the n-type semiconductor HgCr.Se,. The small values 
of | S| may be explained by assuming that the Fermi level is very 
close to the bottom of the conduction band. 

The technical assistance of José Magalhdes is gratefully 
acknowledged. 
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ABSTRACT — The ferro-paraelectric phase transition of SbSI has been 

studied by using very accurate measurements of spontaneous polarization 

and dielectric constant as a function of the temperature. There is strong 

evidence of a large discrepancy between the Curie temperature as determined 

from data above or below T,. 

1 — INTRODUCTION 

The Landau theory for a second order phase transition is 
valid when the fluctuations of the order parameter are not too 

strong, i.e. for temperatures not too close to the critical 

temperature T,, which coincides with the Curie temperature T, . 

Ginzburg [1] has given a criterion which allows an estimate of the 

(*) This work was partially supported by Junta Nacional de Investi- 

gacdo Cientifica e Tecnolégica under research contract n.° 106.79.27; by 

Instituto Nacional de Investigacéo Cientifica; by NATO research grant 1824 

and by Gesellschaft fiir Technische Zusammenarbeit (German Federal Republic). 

() Associated with the Centre National de la Recherche Scientifique, 

France. 

Portgal. Phys. — Vol. 15, fasc. 3-4, pp. 185-203, 1984 185



  

  

  

A. GONCALVES DA SILVA et al. — Polarization reversal of SbSI 

temperature range (around T, ) where this theory is not valid. When 
electric dipolar interactions are responsible for a phase transition, 
this should obey Landau theory except in a narrow “critical 
region” close to T,, typically of the order of « = 10-‘ to 10° 
where « = |T-T,|/T,. For a first order transition the change 
of phase occurs at a temperature T, which is different from T, 

The critical temperature T, is higher than the temperature T, 
(stability limit of the paraelectric phase) and lower than the 

stability limit of the ferroelectric phase, T) [2]. 

In a previous paper [3] we used the critical exponent 

associated with the spontaneous polarization of SbSI to test Landau 

theory in that compound. Here we have fitted experimental data 

on SbSI to the correct expressions of spontaneous polarization 

obtained from Landau theory. Experimental spontaneous polariza- 

tion is obtained through pyroelectric effect and D-E hysteresis 

loops studies. Dielectric constant measurements as a function of 

the temperature were carried out in order to obtain the values 

of all parameters of Gibbs free energy in Landau theory. 

2 — EXPERIMENTAL PROCEDURE 

The pyroelectric coeficient (\) is determined by measuring 

the d.c. discharge current (i) from a sample of known electrode 

area (Ss) subjected to a controlled rate of change of temperature 

(dT/dt). The pyroelectric coefficient is given by A = (i/s) 

(dT/dt)~*. The potential difference across a short circuiting 

resistor arising from the discharge current was measured with a 

P. A. R. model 134 electrometer [3]. The spontaneous polarization 

as a function of the temperature was also derived from 50 cps 

hysteresis loops obtained with a modifiel Sawyer - Tower circuit [4]. 

Dielectric loss («” ) and dielectric constant («’) were measured 

with a model 745 LEADER LRC meter. SbSI was polarized with 

a d.c. electric field while being cooled down through the transition 

temperature. The temperature was measured with a copper-cons- 

tantan thermocouple with a precision better than 0.02 K. Samples 

were cut from thin rectangular prisms 10-20 mm long and about 

0.4mm?’ cross section. SbSI crystals were grown by vapour 
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transport reaction, the polar axis being along the long edge. Silver 

paste contacts were used as electrodes. 

3 — EXPERIMENTAL RESULTS AND DISCUSSION 

Experimental results of pyroelectric effect measured at an 

uniform heating rate of 4 mK s~1 in one sample of SbSI, here 

refered as sample (a), are shown in figure 1. As the temperature 

rises the current passes through a sharp maximum at T,, = 288.9 K 

and then gradually approaches zero. The temperature dependence 

of spontaneous polarization deduced from figure 1 can be seen in 

  

0.15/7- 

    \ 

280 290 300 

T(K) 

  

Fig. 1— Temperature dependence of pyroelectric coefficient \ for SbSI 

(sample (a)). 

figure 2. In figures 3 and 4 we can see pyroelectric coefficient and 

spontaneous polarization as a function of the temperature for 

another sample of SbSI, sample (b). For this sample the pyro- 
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Fig. 2— Temperature dependence of spontaneous polarization P, for SbSI 

(sample (a)) obtained from pyroelectric coefficient data of figure 1. 
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Fig. 3— Temperature dependence of pyroelectric coefficient 4 for SbSI 
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electric coefficient shows a more pronounced tailing-off above 

Tm — 290.1 K. As is well known, Landau’s theory for a first order 
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Fig. 4— Temperature dependence of spontaneous polarization P, for SbSI 

(sample (b)) obtained from pyroelectric coefficient data of figure 3. 

transition requires the Gibbs free energy density to be expanded 

up to the sixth power of the order parameter P [2, 4]: 

G=G,+a(T--T,) P?/2 + b P*/4 + c P*/6 (1) 

The coefficient a and c are positive and b is negative. Standard 

calculations based on minimisation of the free energy give the 
following result : 

a(T-T,) +bP?+cP*=0 for T<T,=T,+3b%/l6ac (2) 

P=0 for TST, (3) 
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For a sample under an uniform electric field E,, expression (2) 

must be replaced by the following one:   
a(T—T,) P+bP?+cP°—E,=0 (4) 

The reciprocal of the electrical susceptibility is given by 

(Up )-? = 4a(T,—T) + (b?/c) 11+ [(T-T)/(T-T,) }? 
for Ti< T, (5) 

(4q)7*=a(T-T,). for T>T, (6) 

where T=T,+b*/4ac. (7) 

Using a least squares method, data were fitted on a computer to 

expression (2). The best fitting to this expression yields the values 
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Fig. 5 — Theoretical fitting of P 3 Versus T (horizontal dashes) for SbSI 

(sample (a)). Vertical dashes: experimental data obtained from 

pyroelectric effect. 
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Fig. 6 — Theoretical fitting of P, versus T (horizontal dashes) for SbSI 

(sample (b)). Vertical dashes: experimental 

pyroelectric effect. 

data obtained from 

of b/a, c/a, T, and T, listed in Table I. The horizontal dashes 

of figures 5 and 6 are drawn using those values. Vertical dashes 

represent experimental data. 

  

  

  

TABLE I 

Sample (a) Sample (b) 

Pyroelec. eff. Hyst. loop Pyroelec. eff. 

b/a [C—2m4K ] — 6.3 X 102 — 1.4 X 102 — 9.0 X 102 

c/a [C—4m8K ] 2.1 X 105 5.4 X 104 12'X 105 

T,, LS 288.2 289.4 289.5 

tT, Ls] 288.5 289.5 289.6 

Te TE 288.9 —_ 290.1       
  

The results obtained seem to show that SbSI follows Landau’s theory 

for a first order transition. As the difference T,-T, is very small 
the phase transition is very nearly a continuous one, as referred 
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by Glass and Lines [4]. By assuming that the tailing off in the 

pyroelectric effect above T, could be explained by an internal 
electric bias field (E,) we have also fitted the data to 

expression (4). The values of b/a, c/a, T, , T,, and E,,/a obtained 

by a method similar to that referred above are listed in Table II. 

The horizontal dashes of figures 7 and 8 are drawn accordingly. 

  
  

  

      
  

  

    
  

TABLE II 

Sample (a) Sample (b) 

Pyroelec. eff. Hyst. loop Pyroelec. eff. 

b/a [C—2m‘K ] - 4.3 X 102 - 3.6 X 10! — 6.9. X 102 

c/a [C—4m8K ] 2.0 X 105 0.64 X 105 9.2 * 105 

Zo [K] 288.7 288.3 289.9 

T,, (K] 288.9 - 290.1 
E,/a [Cm—?K ] 6.9 X 10-3 3.35 X 10-2 9.1 X 10-3 

10 ea rig. ; 

vn “Hay F 
i c 4 

1S) te 

a “e 

a % 

5 + 

gl hie 
250 27 300 Pe Re 

Fig. 7— Theoretical fitting of P, versus T including a bias internal 

electrical field EL (horizontal dashes) for SbSI, (sample (a)). Vertical 

dashes: experimental data obtained from pyroelectric effect. 
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Fig. 8 — Theoretical fitting of P, versus T including a bias internal 

electrical field E,, (horizontal dashes) for SbSI (sample (b)). Vertical 

dashes: experimental data. 

In figure 9 we can see some hysteresis loops, at different tempera- 

tures, for sample (a). We have not observed double hysteresis 

loops as reported by S. Kawada [5] in SbSI samples with a 

critical temperature higher than in our samples. Vapour grown 

non-stoichiometric crystals with a slight excess of sulfur together 

with oxygen impurities show a transition temperature around 

24.7C [6]. The results we obtained are very similar to those 

reported by Fattuzo and Merz [7]. Spontaneous polarization 

obtained from hysteresis loops is seen in figure 10. The results 

exhibited in figure 11 for increasing and decreasing temperature 

do not show appreciable thermal hysteresis, which is consistent 

with the small difference between T, and T,. Table I also lists 

the values of b/a, c/a, T, and T, obtained by fitting the polarization 

obtained from hysteresis loops for sample (a) to expression (2); 

and in Table II are presented the corresponding values by fitting 
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the same data to expression (4). In figure 12 the horizontal dashes 

represent the fitting of the experimental data to expression (2) 

and in figure 13 the horizontal dashes represent the fitting of the 

experimental data to expression (4). 

T= 267.2 K T= 254.1 K 

  

T = 288.0 K T = 292.6 K 

  

T-= 299.2 K T= 307.6 K 

  

Fig. 9 — SbSI hysteresis loops, at different temperatures, for SbSI (sample (a)). 
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Fig. 10 — Temperature dependence of spontaneous polarization of SbSI 

(sample (a)) obtained from hysteresis loops. 
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Fig. 11— Temperature dependence of spontaneous polarization of SbSI 

(sample (a)), determined for increasing temperatures (vertical dashes) 

and decreasing temperatures (horizontal dashes).
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Fig. 12 — Theoretical fitting of P, versus T (horizontal dashes) for SbSI 

(sample (a)). Vertical dashes: experimental data obtained from 

hysteresis loops. 
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Fig. 13 — Theoretical fitting of Bs versus T including a bias internal 

electrical field E, (horizontal dashes) for SbSI (sample (a)). Vertical 

dashes: experimental data obtained from hysteresis loops. 
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We have also measured dielectric loss («”) and dielectric 

constant («’) as a function of the temperature in sample (a) 

(figure 14). e’ has a maximum value at T,, = 288.2 K. The recip- 

rocal of dielectric constant is approximately described by 

(e’)~1 = a’ (T—T%) with a’ = 1.66 X 10° F-*K~'m and T, = 277.3 K 

for T > T, (figure 15). For T < T,, we have (e’)~* =a” (T—Ty) 

with a” = 1.26 x 10° F-'K~!m and T/ = 290.3K (figure 15). 

Measurements of dielectric constant with increasing and decreasing 

temperature show a very small thermal hysteresis as can be seen 

in figures 16 and 17. 
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Fig. 14— Temperature dependence of dielectric constant, -’, and dielectric 

loss, ¢’, for SbSI (sample (a)). 

As we can see in figure 18 the reduced dielectric suscepti- 

bility obtained with the values listed in Table II (pyroelectric 

effect) for sample (a) and using expression (5) are in fair agreement 

with the experimental data. 

Landau’s theory predicts that T’, = T,.. Previous results 

reported for SbSI gave a value of the order of 10 K [8-10] for 

Portgal. Phys. — Vol. 15, fasc. 3-4, pp. 185-203, 1984 197



  A. GONGCALVES DA SILvA et al. — Polarization reversal of SbSI 

the difference T, - Ti, which is consistent with the result we have 
obtained for SbSI. To identify T’, with T,, as it is sometimes 

done, does not seem consistent with the small thermal hysteresis 

observed in SbSI. Given the large value of 10 K for T,—T%, the 
difference of the stability limits of ferro and paraelectric phase 

(T,—T, ) would be of the same order of magnitude and so a 
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Fig. 15 — Temperature dependence of the reciprocal of dielectric constant for 

SbSI (vertical dashes). Theoretical fittings (horizontal dashes): see text. 

much larger thermal hysteresis should be observed. Stokka 

et al [11], in measurements of specific heat for increasing 

temperatures, in SbSI, found T,,—T, ~ 1K, and a thermal hyste- 

resis of the order of magnitude of 1 K. These results are consistent 
with those we obtained. 

It is not easy to understand the large difference between 

T, and T’,. As is well known, some ferroelectric properties of 

SbSI and ABO, perovskites, namely the temperature dependence 

of the soft mode, can be well understood by assuming an 

anisotropic polarizability of the oxygen and sulfur ions [12]. 
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Bilz et al. consider a quasi-one dimensional shell model, where 

one sublattice with rigid cations (Sb) is interacting with another 

sublattice of polarisable anions (S). The third lattice compo- 

nent (I) may be neglected in a first approximation. All long 

range forces are simulated by nearest neighbor forces, while the 
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Fig. 18 — Circles: temperature dependence of reduced dielectric susceptibility 

obtained with values listed in table II for sample (a); dots: temperature 

dependence of reduced dielectric constant exhibited in figure 14. 

non-linear polarisability of the anions is described by a quartic 

(electronic) shell-ion coupling [13]. This model leads to the 

following expression for dielectric constant as a function of the 

temperature (Barret formula) : 

B/(e’—A) =(T,;/2) coth (T;/2T) —T, (7) 

where A and B are parameters, T; the temperature equivalent to 

the frequency («;) of the soft mode at the zone boundary in 

the disperson relation w;(q). 
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By taking T, = 288K and for different values of T; we can 
see in figure 19 a plot of (T;/2) coth(T;/2T)—T, as a 

function of T. For T; = 200K we found T,—T; = 10K, but the 

value T; = 200K corresponds to a wave number 140 cm~! which 

is too high compared to the known values of the soft mode 

frequencies [10]. That model does not give a complete explanation 

for the observed behaviour in the critical region and so we must 

find an additional reason for the existence of such a difference 

between T’, and T,. 
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Fig. 19 — A plot of B/(,’ -A) = (T,/2 ) coth (T,/2T ) = i with Ty, = 288K, 

for several values of Ty 

As there exists strong experimental evidence for a mixing of 
the soft mode with higher vibration modes, leading to the obser- 
vation of interesting optical properties in SbSI, it seems that 
(figure 20) the softening of the low frequency mode is driven by 
one or two other modes coupled with it [14]. The transition actually 
occurs when the frequency of the soft mode vanishes at T,, a few 
degrees above the paraelectric Curie temperature. The transition 
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is somewhat “clamped” between Tj and T, and this might result 
from a strong phonon-phonon interaction. This interpretation is 

well supported by the study of Raman spectra of the ferroelectric 

transition in SbSI induced by hydrostatic pressure, where one 

observes a tailing-off of the soft mode above a crossing point, 

due to a strong interaction between phonons [14]. It might also 

be possible that a diffuse character in the SbSI transition could 

explain the large difference between T, and T; . 
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INTERSYSTEM CROSSING IN HEXAFLUOROBENZENE AND 

BENZENE VAPOURS. THE ROLE OF LOCAL MODES ON THE 

NONSTATISTICAL BEHAVIOUR OF BENZENE 

SEBASTIAO J. FORMOSINHO and ABiLIo M. DA SILVA 

Department of Chemistry, University of Coimbra, 3000 Coimbra, Portugal 

ABSTRACT — Previous work on decay of triplet states of aromatic 

molecules in the vapour phase is reviewed and the possible role of local modes 

in the decay of such systems is followed by studying triplet yields of C.F, as 

a function of pressure and comparing the behaviour with that of C,H,. 

Measurements of the triplet yield of C,F, using but-2-ene sensitized 

isomerization reveal that 4, may show a weak increase (ca. 10%) from 

pressures of 15 Torr (hm =0.84+0.08 ) down to 0.16 Torr (o3= 0,92+0.08 ). 

This behaviour contrasts with the strong decrease (4 times) observed in 

gp for C,H, within the same pressure range. For C,H, these observations 

are interpreted in terms of a nonstatistical intersystem crossing allowed by a 

slow intramolecular vibrational randomization process for the CH local modes, 

which are populated via a large electronic energy gap radiationless transition. 

The normal mode character of the CF stretches provides a faster intramolecular 

vibrational redistribution in T, and appears to be responsible for the statistical 

behaviour of C,F,. These features are supported by the vibrational energy 

dependence of hot triplet decay rates in protonated aromatic and heterocyclic 

molecules which are attributed to T,~»S, transitions in the low energy 

region and to T, ~) S, transitions in the high energy region. The population 

of one CC promoting mode in the intersystem crossing process in C,H, 

accounts for the small triplet yield in the isolated molecule. Comparison 

with the pressure dependence of triplet formation in protio - naphthalene and 

anthracene supports the view of a nonstatistical intersystem crossing from S, 

in these molecules. 

1 — INTRODUCTION 

Studies of the effect of pressure on the formation and decay 

of triplet states of aromatic molecules in the vapour phase may 

help to unravel the detailed fate of such molecules following 

optical excitation. Early work by Porter and Wright [1] on the 
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flash photolysis of naphthalene and anthracene in the vapour 

phase noted a decrease in the amount of triplet (T, ) formed as 

the pressure of added buffer gas was reduced. Subsequent work 

by Porter and coworkers [2] using better experimental conditions 

confirmed these previous findings for a pressure region between 

0.05 to 10 Torr. With the advent of laser flash photolysis relevant 

work was carried out to elucidate the mechanism of the population 

of triplet states via intersystem crossing (i.s.c.) from S, [3-6]. 

However, it is only recently that molecular beam with multicolor 

photoionization techniques has allowed the direct observation of 

triplet states under isolated conditions at several energies of 

excitation [7-11]. Smalley and coworkers have found that the 

vibrational energy, E,, dependence of the hot triplet, Tie decay 

rates in pyrazine, pyrimidine [10], toluene [9], benzene [8, 11] and 

naphthalene [7] is very strong at low energies (S, region), but 

becomes very weak at high energies, when the total energy is 

larger than the electronic energy of S, (S, region) . In each region 

the relation between the triplet decay rates and E, is virtually 

exponential, but the intercept at E, = 0 in the S, region is 3 to 5 

orders of magnitude higher than the intercept in the S, region. 

Such vibrational energy effects were initially interpreted by consi- 

dering that the T, decay was only caused by i. s. c. to S, . A dilution 

of the good acceptor modes due to a fast intramolecular vibrational 

relaxation (IVR) was responsible for the weakening of the 

dependence of kr¥~»s, at high E, [9]. However recently Smalley 
and coworkers [12] have shown that this saturation effect of i. s. c. 

at high energies cannot be explained by a radiationless transition 

Ty — S, associated with IVR. 

Pyrazine and pyrimidine have long been recognized as 

examples of molecules in the intermediate coupling situation [13, 14] 

for S,~»T,. This i.s.c. can be represented kinetically by a 

reversible process [15] 

ky 
5S 2 T, 

Kg 
k, | | k, 

y i 

where k; and k; are the rates of irreversible and ky and Ks are 

the rates of reversible crossing. The vibrationally hot T, state, 
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upon a short pulse excitation in S,, rises with a first order rate 

constant 2, and decays with a rate constant i, 

2d. 2=K, +kyp+k,+kg pts [(k, + kp-k;~kg)? Se 4k, kg]? (1) 

In molecules such as pyrazine and pyrimidine k,+k,-k,—k, >> 
(4kpkg )'/”? and consequently A, ~ kg +k,; in the isolated molecules 
k,; is very small and A, ~ kg. Consequently the triplet decay rates 

in the S, region can be attributed to the i.s.c. T.. m Si, whereas 

at lower vibrational energies the triplet decay is due to T.. — So. 

This would explain why the intercept of the triplet decay rates 

in the S, region in 3 ~- 6 X 10 times larger than the cold triplet 

decay rate [10]. The dependence of the decay rates on E, depends 
on the electronic energy gap between the states involved in the 
transition [14]. For small electronic energy gaps, as is the case 

for a S,~» T, process it is a weak dependence, while for a large 

electronic energy gap as in the T, ~~» S, process it is a strong 

dependence. 

Owing to the similarity in the dependence of the triplet decay 

rates with E, of benzene [8,11] toluene [9] and naphthalene [7] 

and the above mentioned heterocyclic molecules, the same inter- 

pretation is foreseeable for these aromatic molecules. The 

pressure dependence of triplet formation of benzene [16, 17], 

naphthalene [2,5], anthracene [2, 4, 6] and acridine [18] has been 

extensively studied by several authors and nonstatistical behaviour 

has been claimed for the i.s.c. process from S, [2, 6, 17, 18]. 

Strong support for such a claim comes from recent molecular 

beam experiments which allowed the observation of quantum 

beats in the fluorescence decay of anthracene [19] when excited 
into several levels in S,. Previously such effects have only been 

observed in much smaller molecules, pyrimidine, biacetyl and 

methylglyoxal [20, 21], classified as intermediate case molecules 
with respect to i.s.c. from S,. 

For radiationless transitions between two electronic states, a 

nonstatistical behaviour requires that the density of coupled levels 

in the final state is comparable to that in the initial state. For 

the i.s.c. process S,~» T, in aromatic molecules a suggestion 

was made that such a low density of states can only be provided 

by the CH vibrational levels [18] which are good accepting modes 

for the nonradiative transition S,~~» T, and which have a strong 
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local mode character [22-24]. Such local modes interact strongly 

between themselves, but are weakly coupled with the bath of 

normal modes [24,25]. In these conditions the intramolecular 

vibrational redistribution process into the quasi-continuum bath 

of the normal modes is slow and can determine the rate of the 

overall nonradiative transition. In contrast normal modes are 

strongly coupled with their own bath and provide a fast redistri- 

bution of vibrational energy. To investigate the role of local and 

normal modes on i. s.c. we decided to study the effect of pressure 

on the triplet yield of C.F; and compare it with the well established 

behaviour of the C,H, triplet state [16,17]. C.F, is a convenient 

molecule, because it has the same size as benzene, has stretching 

modes (CF) with a normal mode character [23,24] and an 

electronic S,—T, energy gap (~9500cm~') that is virtually 

identical to that of C,H,, judging from the fluorescence [26] and 

phosphorescence spectra [27]. 

2 — EXPERIMENTAL 

Spectrograde perfluorobenzene (Aldrich) was employed and 

its purity, checked by vapour phase gas chromatography, was 99 %. 

Cis-butene (Fluka) had a percentage of trans-butene of 0.3 %. 

Mixtures of C.F, and cis-butene were prepared on a mercury-free 

vacuum line and spectroscopically pure argon (Air-Liquide) was 

added to increase the overall pressure. Samples were irradiated 

with a 150 W medium pressure Hg-lamp on a wavelength region 

between 250-260 nm. Absolute yields were determined on irra- 

diation at 260 +1nm by a 250 W xenonlamp through a mono- 

chromator. Analysis of reactants and products was carried out 

on a Perkin-Elmer 900 gas chromatograph with columns filled 

with Durapak. The percentage of isomerization was always < 1%. 

Further experimental details are given elsewhere [17]. 

3 -- RESULTS 

The triplet yield of C.F, measured by cis-but-2-ene isomeriz- 

ation was found to decrease by 10 % upon addition of argon, to a 

pressure of 15 Torr. At the low concentrations of butene used 
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not all the triplet states were scavenged, but the fraction of 

triplets quenched by cis-butene was constant throughout the whole 

pressure range, because the same mixture of C,F, and cis-butene 

(0.08 Torr C.F, + 0.08 Torr cis-butene ) was employed in all the 

experiments. 

. To determine absolute triplet quantum yields a pressure of 

cis-butene > 100 Torr is required to ensure the scavenging of all 

the triplet molecules [27]. Mixtures of 0.08 Torr C.F, and cis-butene, 

with pressures of 100 Torr and 400 Torr, were employed. The 

quantum yield of isomerization was 0.18 and 0.38 respectively. 

Assuming that all triplets are scavenged at 400 Torr of butene, 

an absolute yield of line = 0.84 + 0.08 is estimated from the 

stationary state ratio [t-Bu],/[c-Bu], = 2.2, determined for 

C,H, at high pressures [17]. The small increase in the yield of 

triplet with a decrease in pressure ($% = 0.92+ 0.08) is in 

agreement with the small decrease in the fluorescence yield with 

pressure, attributed to vibrational relaxation in S, [27]. The 

fluorescence yield from the thermally equilibrated S, state is 

de = 0.019 + 0.001 and, consequently, triplet and fluorescence 

yields do not add up to unity (0.86). In the isolated molecule, 
upon excitation at 260nm, 493. ~ 0.005 [27] and ¢%+ ¢% = 0.93. 

4 — DISCUSSION 

Intramolecular Vibrational Relaxation 

The contrast between the pressure dependence of C,F, and 

C,H, triplets is illustrated in Fig. 1. The latter shows a nonstatistical 
behaviour whereas the former behaves statistically with respect 
to i.s.c.. C.F, and C,H, differ through few electronic and vibrational 

features. Electronically the presence of lone pair electrons in 
C.F, can increase spin-orbit coupling and this can explain why 

ra is higher in this molecule than in C,H,. However such 
differences in spin-orbit coupling do not affect the relative yields 

as a function of pressure. The different behaviour of the two 

molecules should be attributed to differences in the CF and CH 
stretching modes. In principle the lower frequency of CF modes, 
compared to CH modes, increases the density of states for the 

triplet manifold and could place C,F, in the statistical case. 
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However, molecules such as toluene, naphthalene and anthracene 

possess much higher density of states and they behave also in a 

nonstatistical fashion. Consequently we attribute the observed 

differences to the local mode character of the CH _ stretches 

in contrast with the normal mode character of the CF 

stretches [23, 24]. 
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Fig. 1— Relative triplet yields of C,H, (0) and C,F, (¢) as a function of 

the pressure of added argon (0.05 Torr C,H,+ 0.05 Torr cis-butene; 
0.08 Torr C.F, + 0.08 Torr cis-butene ) 

On the basis of deuterium isotope effects [14] in aromatic 

hydrocarbons, one finds that the CH stretching modes parti- 

cipate significantly as accepting modes for electronic energy 

gaps > 5000cm~1 and become the main accepting modes for 

electronic energy gaps > 10000cm~*. In C,H, the electronic 
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energy gap S,—T, is close to 10000 cm™ and considering that 

one CC promoting mode is populated, ca 75 % of the vibrational 

energy will go into the CH stretches after i.s.c. to T, [27]. 

A similar situation is expected in naphthalene and anthracene 

where the electronic energy gaps S, —T, are even larger. 

IVR of highly vibrational CH overtone excitation in C,H, 

vapours has been studied by Berry and coworkers [29, 30]. 

Vitrational relaxation is a very fast process (50-200fs) but is 

highly nonstatistical. Example of such behaviour is the nearly 

constant bandwith in CH overtones over a vibrational energy range 

(up to 10 v4, ) that involves 6 orders of magnitude change in 

the vibrational density of states. Deuteration also does not affect 

the overtone relaxation. These studies reveal that IVR proceeds 

via specific state-to-state intramolecular processes, producing a 

limited subset of final vibrational levels of CH stretches and 

possibly CH bending modes. Coupling to the bath of normal modes 

is a relatively slow process [25]. Evidence for the slow rate of 

such a relaxation process in other aromatic molecules with CH 

modes is given by the T-T absorption spectra of hot triplet 

species. Owing to the fairly restricted Franck-Condon factors 

governing i.s.c., only a few vibronic states are initially populated 

in T, and its absorption is more structured than that of the relaxed 

state. Such a feature is quite evident for the nascent triplets of 
naphthalene [5] and anthracene [6] observed on a nanosecond 

time scale. In contrast normal modes such as the CF modes are 

strongly coupled between themselves and can very quickly populate 

a great manifold of vibrational levels [25] in C.F, (T,) following 

i.s.c.. Studies [31] of IVR in naphthalene optically populated in 

a few normal modes reveal that intramolecular redistribution of 

energy is fast and it occurs within an order of magnitude, to the 

bath of all the vibrational levels. 

Using the concept [32] of the number of coupled states, N, and 

its relationship with the density of states, p, it can be shown that 

Nr/ Ns = pr kr / (pg Kg) (2) 

Eq. (2) reveals that the weak exponential vibrational energy 

dependence of the triplet decay rates in the S, region reflects the 

similar dependence of the S, decay rates. In order to test eq. (2) 

in pyrimidine we have partitioned, as usual, the vibrational modes 
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of the molecules in S, and T, states into sets which will be treated 

as degenerate, with frequencies 500, 1000, 1500 and 3000 cm~. 

The density of states was calculated by the Haarhoff [33] equation 

and compared with ¢7/p, calculated through eq. (2). For such 

calculation the number of coupled states was estimated by direct 

counting, considering all possible numbers of quanta which add up 

to the correct energy. Table 1 presents the calculations and 

reveals that a fair agreement (within an order of magnitude) was 

found when all the vibrational modes were considered for the 

transition rather than just the CH stretches. Similar results were 

found for pyrazine. For both molecules the electronic energy gap 

is small (ca 2000cm~!) and CH modes are not good accepting 

modes. A different situation occurs for large electronic energy 

gap transitions. Considering the decay of the hot triplets T, in 

benzene and toluene reported by Smalley and coworkers as a 

measure of the average kg rates [34], ratios of density of states 
can also be calculated. Table 1 shows the results and in contrast 

with the findings for the heterocyclic molecules a fair agreement 

can be found if the CH local stretches were almost the only modes 

involved in the i.s.c. process S, < T,. This supports the view 

that the nonstatistical behaviour of benzene and other aromatic 

molecules is due to the strong local character of the CH modes. 

Triplet Yields 

The pressure dependence of triplet formation in large mole- 

cules has been currently interpreted in terms of two kinds of 

mechanisms. One considers the i.s.c. process S,~» T, in the 

statistical situation, but proposes the existence of a fast (<100 ns ) 

i.s.c. process from the hot triplet to the ground state [5, 16]. The 

other considers a pressure dependent i. s.c. process such as in the 

intermediate coupling situation [2, 4, 6, 17]. 

Observations of triplet formation, at low pressures, immedia- 

tely following i. s.c. can provide a clear distinction between these 

two kinds of mechanisms [5]. Within the fast T,~» S, i.s.c. 
mechanism the triplet concentration should decrease with time, 

on a nanosecond scale. Since such a decrease corresponds to the 

rapid loss of the high triplet levels to S, , it should be numerically 
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identical to the increase in ¢ of the relaxed triplet from low to 
high pressures. Studies of the triplet absorption spectra of anthra- 

cene (3 Torr CH,) by nanosecond laser flash photolysis, as a 

function of time, reveal the opposite effect since the triplet 

concentration increases by a factor of 1.25 times ca. 1 ys after 

excitation [4,6]. Schréder et al. [5,35] have carried out identical 

studies for naphthalene at low pressures (0.07 Torr) and have 

found that the integrated triplet absorption decreases by a factor 

of 1.8 with an increase in time, a value close to the overall 

increase of ¢p (2.0 times ) from low to high pressures. However 

the integrated absorption bands at shorter and longer times did 

not correspond to the same vibrational bands. When this situation 

is properly taken into consideration we can conclude that at most 

only 15 % of naphthalene triplets are lost via a cee So process. 

Consequently these experimental studies support also the view 

that naphthalene and anthracene triplets behave nonstatistically. 

Benzene [17], naphthalene [86] and anthracene [4] have 

small but significant triplet yields under isolated conditions. The 

relative triplet yields are virtually identical for these molecules 

bei 4 Sn = 0.25. In C.D, this yield decreases, red f in = 0.17. These 

yields can be attributed mainly to the irreversibility in the i.s.c. 

S, ~~ T, owing to the direct population of a CC promoting mode 

which has a normal mode character. Under the experimental 

excitation conditions the energy in T, is E, = 10000cm™ to 
12000cm~! for C.yHe, CioHs and Cy,Hio and consequently in 

the nonradiative transition 1 CC (%,=1500cm™*) and 3 CH 
( ¥czz ~ 3000 cm=! ) modes are populated. Assuming that the ratio 

of triplets that would not revert to S, is proportional to the 

population of the CC modes, 25 % of the triplets formed will not 

come back to S, and this is in good agreement with the experimental 

ratio dy /¢p = 0.25. In C,D, the i.s.c. populates 1 CC an 4 CD 
modes (vqp = 2100cm~') in the T, state, leading to 20% of 

irreversibility. This value is also close to the experimental ratio 

ben / de (C,D,) = 0.17. Better agreement between the ratio of 
states was achieved for benzene and toluene when the population 

of a CC promoting mode was considered (Table 1). 

Pressure dependent fluorescence yields and decays were found 

for C,H, and C,,H;, [17, 37], and agree with the pressure dependence 

of triplet yields. With anthracene [6] pressure dependence was also 
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found for the fluorescence intensity, but the fluorescence decay 

is exponential. We have attributed such a feature to the irregu- 

larities in the spacing and coupling constants in the S,~»T, 

transitions which. can lead to a variety of kg rates. In this situation 

the fluorescence decay, mixture of a manifold of biexponential 

decays, was shown [6] to be pressure independent with a rate 

equal to k, + k». However the observation of quantum beats [19] 

in the fluorescence of anthracene reveal that under proper 

experimental conditions pressure effects on the fiuorescence decay 

can be observed. 

We are grateful to Prof. G.R. Fleming for useful comments 

and to INIC for financial support. 
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ABSTRACT — We present some results of a study of the propagation 

of nonlinear wavepackets in a plasma strip-line system, which can be de- 

scribed as a nonlinear dispersive transmission line. 

I— INTRODUCTION 

In the last few years much attention has been given to the 

propagation of solitons in physical systems. In particular, it is now 

well-known that a plasma can propagate envelope solitons with 

central frequency nearly equal to the electron plasma frequency. 

This effect has been studied in uniform [1] and _ slightly 

nonuniform [2] semi-infinite plasmas. However, from the experi- 

mental point of view it is perhaps more suitable to study a 

configuration in which the transverse dimension of the plasma is 

finite. This is the reason why in this paper we discuss the 

propagation of envelope solitons in a plasma strip-line system. 

Such a system can be understood as a nonlinear transmission line, 

where the nonlinearity is associated to the plasma motion. 

In Section II we study the plasma strip-line element with 

which we can construct a transmission line. We will study its 

properties in the linear approximation, assuming that the plasma 

electrons are at rest in the absence of an external perturbation. 

In Section Ili we take into account the existence of a finite 

electron temperature. In Section IV we show how a nonlinear 

transmission line equivalent to a long plasma strip-line can be 

constructed. In Section V we discuss the equation of propagation 

along this line. In the linear approximation we obtain the dispersion 
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relation equivalent to that of the line. In the nonlinear regime 

we show that the equation of propagation for the envelope of a 

wavetrain can be reduced to the nonlinear Schrodinger equation, 

if the carrier frequency of the wavetrain is nearly equal to the 

electron plasma frequency. The soliton solution of the nonlinear 

Schrodinger equation is then of the Langmuir type. However, the 

associated electric field in the plasma is perpendicular and not 

paralell to the direction of propagation, as it is the case in 

the usual Langmuir solitons. The conclusions are stated in 

Section VI. 

Ii COLD PLASMA CONDENSER 

We consider a plasma slab of uniform density and thickness 

a placed between two infinite plane plates P, and P, (see Figure 1). 

The distance between plates is | and we apply a potential 

  

oa 

  

  (2
) 

Sy,
 

PLASMA 

omen iP 

d 

        
  

Fig. 1 — Model of the plasma strip-line system. 

V(t) =V,exp(—iwt) to the plates. The electron motion is 

described with the aid of hydrodynamic equations which include 

a k’netic pressure term. The ions are assumed fixed. The electron 

density n and velocity v are then described by: 

on/ott+o(nv)/ax=0 
1 

(d/dttdv/ax%)v=—(e/m)E-y,v—(Si/n)on/dx ” 
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where E is the electric field inside the plasma, », is the electron 

collision frequency and S2 = 3K T,/m, where T, is the electron 

temperature. The electric field E also obeys the Poisson equation, 

if electromagnetic corrections are neglected: 

dE/dx =(e/e,) (n,—n) Q) 

where n, is the mean electron density. On the other hand, the 

parameters describing the exterior properties of the plasma 

strip-line system are the current density J and the Rotener! Vv 

between plates, which are determined by: 

J=2e,0E/dt—env=e dE, /ot 

+a/2 

V=E,(I-a) +f, E dx (3) 

where E, is the electric field outside the plasma, in the vacuum 

region laying between the plasma and each plate. 

Let us now take the cold plasma approximation (T, = S, =0). 

In that case we assume homogeneity along x and, after time 

Fourier analysis of equations (1) - (3) we find, for each com- 

ponent » of the Fourier spectrum, 

J=—iowg, E, = —ioe,e(o) E 

(4) 
V=[(l-a) e(o) ta] E 

where «(w) is the cold plasma dielectric constant: 

e(o) =1—(o,/o)? (l1+iy/o) (5) 

where o,—(e?n,/2e,m)’” is the electron plasma frequency. 
From equation (4) we get then the impedance of the plasma 

strip-line, per unit area, 

Z=V/J=([Cl—a) + aeCo)="]/(—102,) (6) 

It is easy to see that this impedance is composed by a series 

of two capacities C, and Cw , such that: 

C, = 2e,/(l—a) , Ce = o (wo) /a (7) 
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Replacing (5) in the equation for C,, we obtain circuit elements 

which do not depend on the frequency ». In fact, the imped- 
ance Z,, associated to C,, can be writen as: 

Z, =i/(oC, ) =(R,—ioL,) /(1—o® L, C,-ieR, C,) 
(8) 

where the resistance R,, the inductance L, and the capacity C 
are defined by: ° 

Ry = ave/ (e903) 5 Ly=a/(e 08) , Cyp=e/a 9) 

Thus Z, is a parallel RLC circuit and the plasma condenser 

is equivalent to such circuit in series with C,. 
A resonance (Z = 0) occurs for 

w = op V1—(a/1) (10) 

as can be seen from equation (6) if the damping terms are 

neglected; and an anti-resonance (Z— oo) for «0, which, 

in the collisionless limit, leads to o = o,. 

III— HOT PLASMA CONDENSER 

We consider now the situation where T,=- 0. In this case 
we can no longer neglect the spatial perturbation in the x direction. 

Making a Fourier transform in time, we get from equation (1) 

the following expressions for the electron density and velocity 

perturbations: 

fi=n,/(io) -dv/dx 
' “4 : (11) 

v=(1/ie) (1+in/o) (eE/m+S./n,- df /ax) 

where i=n—n,. 
Using equation (2) and after eliminating v and n, we obtain 

the following equation for the electric field: 

[e?/oxXt+k dE/dx =0 (12) 

where 

k= [o? (1+ix/o)—03)]/S3 . (13) 
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The general solution of this equation is of the form: 

E=E,+A cos kx+ B sin kx (14) 

Assuming now that the velocity at the plasma boundary 

(x = +a/2) is equal to zero, we get from the Fourier transform 

of equation (3a) the following result: 

B=0 , E,+A cos (ka/2) =E, (15) 

This means that the field (14) reduces to a purely time 

varying field E, plus a space dependent field of cosinus form. 

Returning to equation (11) we get: 

fi=(e, k/e) A sin kx 

v=(e/m) (l/io) (I tiy/o). (16) 

- [E, + (1 + k? S2/2,) A cos kx] 

Using once more the assumption that the velocity is zero 

at x = +a/2 we get from equations (15b) and (16b): 

A =—(o,/kKS,)? E, sec (ka/2) 
(17) 

E, = E, (1 + of /k’ SQ) 

We can now express the external potential drift V as a 

function of E,. Using (17) in the Fourier transform of equation (3) 

we get: 

V=E, [1+ ao /(k?S3) —203/(k*S3) tan (ka/2)] (18) 

The plasma condenser impedance can be easily obtained, if 

we use J = —iowe,E,: 

Z =—i/(we,) . 02/(K? S2) [-1k? S2/o2—ka + 2 tan (ka/2)] (19) 

This equation as well as equation (6), are well known in the 

literature [3], but here we have used a more straightforward 

calculation. The anti-resonances of the system (Z— » ) are now 

given by the condition cos(ka/2) =0, which leads to: 

oy = op [1+ (2N41)? x? AB/a?]” (20) 
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where N = 0, 1, 2,... and A} = S23/ 2. The resonances (Z—> 0) 
are obtained by solving the equation (cf. [3]): 

tan (ka /2) =(ka/2) +1/2 1 k® a4 (21) 

When » < , the wavenumber becomes imaginary (cf. eq. (13)); 
putting z = —ika/2 we can rewrite eq. (21) in the form: 

tanh z—z+ z* 41 A/a =0 (22) 

When | ka | << 1 an expansion of eq. (21) or (22) leads to: 

o = wp [1—10 AB /a? + 120 1A4/a®] 1” (23) 

In the general case (21) has solutions ky (N = 1, 2,...) such 
that 

ky a/2=xXy't by (24) 

where Xy is the Nth non-zero root of tan x = x and 8y>0 
when Ap <<a (Xy + Sy>(2N+1)27/2 when rAp>>a). An 
additional solution exists, given by (21) or (22) as 413, / a is 
larger or smaller than 1/3, respectively; when Ap<<a then 
Z—>a>/(412}%). 

Comparing the results with those obtained in the previous 

section we see that the influence of the temperature is to replace 

the anti-resonance » = o, by an infinite number of anti-resonances 

© = wy (eq. (20)), Which when \y << a (corresponding to the usual 
situation in laboratory experiments) lie close to ®p- On the other 

hand the resonance »,[1—(a/l)]'” is also replaced by an 
infinite number of resonances. Since, from (13), 

o=op[1+(2rdp/a)? (k a/2)? }? (25) 

it is easy to see that, for \p><< a, such resonances (eq. (24)) 

lie close to »,, but the ‘additional solution” lies close to 

@é,tl—Ca/t) ]*. 
If the nonlinear terms of equations (1) - (3) are now taken 

into account we get an expression for the impedance Z which is 

formally analogous to equation (19) but where o, is replaced by 
an effective plasma frequency which depends on the square 

amplitude of the potential: 

were = op (1—a@|V!*) (26) 
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The perturbative nonlinear analysis is quite lengthy and will 

not be presented here. We just quote the approximate value for 

the parameter a [4]: 

aaa { 1-1/3 (op / kS, )* [1+ (kS, /o,)? ? 

[1/2 +2 (o/o)? (1+ (KS,/o,)?)]} (27) 

with « = «,/(2n,T, a’) 

This nonlinear parameters can be justified in a rather simple 

way. If we take the equation of motion in the x direction and 

average over a time scale of the order of 1 /o,, we get for the 

mean velocity the following equation 

d<v>/dt=—(e/m) -0/d0X(e|E|?/en,) (28) 

This equation shows that there exists an effective potential 

Vere acting on the electrons and making them move (in a time 

scale much larger than 1 / o, ): 

Vere = 0 |E|? / (en, ) (29) 

Assuming that the electrons reach thermodynamic equilibrium 

in this potential [1], we get for the mean density: 

<n> =n, exp (—€Vere / KTo) (30) 

Assuming now that eV.+-;<< KT, , the mean electron density 
will be given by: 

<n> =n, (1—-€V eg / KT.) (31) 

Using (29) and considering that |E|? is proportional to | V |? 

we can see that this nonlinear correction to the mean electron 

density is of the form —a|V|*, as stated above. 

IV — EQUIVALENT TRANSMISSION LINE 

We are now able to define the nonlinear transmission line, 

which is an electric analog of the strip-line plasma system. This 
line can be viewed as an infinite series of condenser elements, 
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each of which is described by the equations deduced in the 

previous section. In order to have a complete description of the 

line we must add an inductance L,, and a resistance R, has to 
be retained when we consider the propagation along z. We 

can easily obtain the equivalent circuit of fig. 2, where the 

cold plasma limit was considered. The plasma inductance L, ( V’ ) 

is given by equation (9) where w;, was replaced by wi. In 
the expression of R, we neglect the nonlinear corrections to 

the plasma frequency, because R, is already a small quantity. In 

this work we will be interested only on the complete case of a 

transmission line without losses (R,;=R,=0). We will also 
take 1 = a in the configuration of figure 1, which means C, = ~. 
It can be shown [4] that in the most general case the nonlinear 

solutions are quite similar to those obtained here. In the assumed 

WW DT —   

    

  

R, d5Z —_l_ L, 6Z + ose 

hi ‘of Lp(v?)/52 V 

oy ai 

7 Rp/5zZ 

e —o     
Fig. 2 — Equivalent electric circuit to the transmission line. 

approximation we can see from figure 2 that the current flowing 

in the circuit elements is given by: 

di/at=(1/L,)dV/0z (32) 

On the other hand we also have: 

Si=(di/oz) &Z=i +i (33) 
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where the currents i, and i, are given by: 

i= O, 62-9 at’, i, = (82/L,)| Vat (34) 

From these equations we can easily get the equation of the 

potential perturbation along the line: 

o°V /9t—(1/C,L,) 02V/a2+V/(CyLy) =0 (35) 

V— ENVELOPE SOLITONS 

Let us consider now a potential of the form: 

V(z,t) = Vizit) e™ (36) 

where V(z,t) is a slowly varying amplitude, in the sense that: 

laV/at| << |V| (37) 

Replacing (36) in (35) and taking (37) into account we get 

an equation of propagation for the envelope in the form: 

—2iedV/dt—oe V—(1/C,L,)0V/d2+V/(C,L,) =0 

(38) 

If we use now the nonlinear expression for the plasma 

inductance L, we get: 

1/(C,L,) = 03 (1—a|V|?) (39) 

Assuming that the wave frequency » is nearly equal to the 

electron plasma frequency, equation (38) reduces to: 

Zio dV/dttoalVi? V+ (1/C,L,)0°V/9z2=0 (40) 

Using now space and time adimensional variables: 

r=(e/2)t , w=Zze (CLL): 22 (b/g): 4) 
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where L* is the linearised plasma inductance we finally obtain: 

idV/dtt+0V/d #@+a/Vi(2>V=0 (42) 

This is the well known nonlinear Schrodinger equation which, 

for V tending to zero at infinity (V0 for zo) has the 

following soliton solution [5]: 

V=A(2/a)? expii[(B/2) »—(B?/4—A?) 7] 
sech [A(»—Br) ] (43) 

where A and B are two constants of integration. The first 

constant A defines the amplitude of the soliton perturbation and 

the second one B defines the velocity at which this perturbation 

moves along the line. We can then specify B, because it has to 

be equal to the usual group velocity v, in the coordinates » and. 
In order to determine v, we return to equation of propagation (35). 

After linearization and using V = V, exp i(kz—wt) we get the 

linear dispersion relation of the line which describes the evolution 

of each Fourier component of the soliton spectrum. 

o? = 0% +k? /(CyLy) (44) 

The phase and group velocities along the line (in the coordi- 

nates z and t) are given by: 

Vo=o/k =o, [1/K?+1/(C,L,03) J” 

(45) 
Ve = 1/(C,L; ve) 

We can then state the explicit form of the constant B: 

B=2 [1+63,C,L,/k]-*” (46) 

This equation completely specifies the soliton solution of (43). 

VI — CONCLUSIONS 

We have shown in this work that a long plasma strip-line 

system can be described by an equivalent transmission line. This 

line has nonlinear properties, which are associated with the 

226 Portgal. Phys. — Vol. 15, fasc. 3-4, pp. 217-227, 1984



A. B. SA and J. T. MenpoNnca — Envelope solitons in a plasma strip-line 

nonlinear motion of the plasma particles induced by the potential 

applied to the transmission line. We have determined the linear 

dispersion relation of the line and as our main result, we have 

shown that such a line can propagate envelope solitons, which are 

similar to the well known Langmuir solitons. However the nonlinear 

eauation of propagation along the line differs slightly from the 

Zakharov equation which describes the Langmuir solitons in an 

unbounded plasma. The main difference is that our solitons are 

sclitons in the strict sense, as defined by Scott et al. [6], and 

the usually called one dimensional Langmuir solitons are solitary 

waves which are not solitons in this sense [7]. In the case of a 

line with a finite resistance R, we can also get soliton solutions 
propagating along the line with a slight damping [8]. 

This work remains valid only in the limit of low electronic 

temperatures. In the case of finite temperatures we have to compare 

the spectral width of the soliton solution with the distance between 

two neighbouring resonances in order to conclude about the 

validity of the previous results. However it is quite obvious that 

in the general case the nonlinear equation of propagation cannot 

be written in the simple form used here. The general features of 

soliton propagation using a consistent theory for a finite tempe- 

rature plasma will be discussed elsewhere. 
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ABSTRACT — Field-effect measurements were performed at several 

temperatures in hydrogenated amorphous silicon (a-Si:H) films with 

different doping concentrations. These films were prepared by sputtering of 

ions in the liquid phase followed by activated reaction in a plasma of argon 

and hydrogen [1]. The process of preparation of the samples and the method 

of measurement are described. It is attempted to correlate the properties of 

the films with parameters of their preparation. The screening responsible for 

the field-effect is, at lower temperatures, ascribed to the localized states 

situated near the Fermi level, whereas at higher temperatures the dominant 

role is played by the mobile carriers in the extended states. The process 

of calculation of the field-effect electronic density, Neg [2], is presented; 

in our samples it falls within the range 1016 - 1019 cm-* eV-1, The interpretation 

of the results is assisted by knowledge of the values of the electrical 

conductivity, which help to understand the mechanisms involved. 

1 — INTRODUCTION 

Amorphous semiconductors with tetrahedral bonds, as it is 

the case of the amorphous silicon (a-Si), exhibit a continuous 

distribution of the electronic states in the forbidden gap, defined 

between the mobility edges, E, and E., of the valence and 

conduction bands. Hydrogenated amorphous silicon (a-Si:H) 

deposited on substrates at a temperature around 250°C, shows, 

because of a reduction in dangling bonds through liaisons with 

hydrogen atoms, a low value of the state density in the central 

region of the forbidden gap. As a consequénce [3], it is possible 
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to dope a-Si:H films, leading that way to type-n or type-p 

semiconductors. 

When a transverse electric field is applied across a dielectric 

material, the resistance of the sample is changed. The measurement 

of this change in the resistance of a film, due to the field-effect, 

has been a method largely used to evaluate the density of states 

N(E) [4]. In this paper the approach proposed by Mahan and 

Bube [2] has been admited, by considering a field-effect electronic 

density, Np_, in order to characterize the distribution of states. 

Parameters related to the resistivity of the samples are also 

presented. 

It must be said that the measurements have been performed 

on samples which have been produced using a new method already 

described [1]. 

2 — EXPERIMENTAL CONSIDERATIONS 

The samples were obtained by sputtering of ions from the 

liquid phase, followed by an activated reaction taking place in a 

plasma of argon and hydrogen. The liquid phase was obtained on 

the top of n- and p-type cylinders of silicon, with different 

  

    

TABLE 

Ingot Flow rate Deposition Film 

Sample ohm-cm Substrate (cm*/min) Time Thickness 

/ Type H, Ar (min) (pm ) 

RE 12 2p Mica 37 30 1.5 0.9 

RE 20 02 p Glass 7059 + Al 37 30 25 1.2 

+ SiO, (0.2 um) 

RE 23 10 n Glass 7059 + Al 36 28 2.5 0.5 

+ SiO, (0.1 um) 

RE 35 02 p Mica 33 115 2.5 0.8 

RE 36 .02 p Mica 30 15.5 2.5 0.7 

RE 37 02 p Mica 10 35 2:5 0.8 

RE 38 02 p , Mica 6 39 2.5 0.9             
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concentrations of doping, by means of the bombardment of a 

focused beam of 8.2 keV electrons, the beam power being 1.6 kW. 

The substrate, connected to earth, was maintained during growing 

at a temperature of 250°C. The pressure in the reaction chamber 

was initially less than 10~° Torr, taking during deposition a value 

of 3 mbar (except for sample RE37 in which the value was 

1 mbar). In the Table, further characteristics of the measured 

samples are given. 

  

= T 
Chamber of 

      ! 
| ! 

| | 
! a-Si:H 

SUBSTRATE ie a 

1 1 

  

    UZLIILLLA 

        
Power Supply Ve 

      

Fig. 1— Experimental set-up for measurement of the field-effect (schematic). 

The dielectric layer of SiO, was. processed by the same method 

as described for the a-Si:H film; in the chamber a mixture of 

argon and oxygen gases was used, the time of deposition being 
2.5 minutes. Aluminium contacts were used with the type-p 

specimens but with the RE23 sample, of type-n, the contacts 

were made of superposed layers of antimonium and gold, 

Figure 1 represents the set-up used to perform the field-effect 

measurements. The substrate plays the role of insulating dielectric 
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in the conventional IGFET geometry, the distance between the 

source S and the drain D being of the order of 100m. A field 

voltage V,, varying between —100 and + 100V, is applied to 

the field electrode, the gate G. A variable channel voltage, V,, is 

used between the source and the drain, and the corresponding 

current is measured by an electrometer (Keithley 614 Electrometer). 

The thickness of the films was measured with a Talysurf. 

3 — RESULTS AND COMMENTS 

The transverse electric field imposed across the film and the 

dielectric substrate creates a space charge layer near the 

film — substrate interface which commands the resistance of the 

film. Since this space charge resides predominantly in localized 

gap states, the field-effect provides information about the corres- 

ponding density of states. 

For different temperatures, with a constant channel voltage 

V., values of the source-drain current, I,5,, were obtained as a 

function of the gate voltage, V, (field voltage). Being I, the value 

of the current Ig, for V; = 0, we can write 

When V,,0 we have 

e = (R, + AR) Ign 

and therefore 

AR/R= (I, /Igp) —1 

Plotting AR/R in terms of V, (as an example, see Figure 2), 

we can easily evaluate R / (dR / dV;,) for Vp = 0, which is simply 
the inverse of the slope at the origin for each one of the curves. 

This parameter is fundamental for the kind of presentation and 

analysis of the results here exposed. The resistance change is due 

to band bending created by the spatial charge which screens the 

external electrical field. 
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It is appropriate to consider a quantity Ny,, called the 

field-effect state density and given, for the case of small changes 

in resistance, by 

Neg = (R/(dR/dVR)), > eg/(edDkKT) 

where eg is the dielectric constant of the dielectric material used, 
e is the electronic charge, d is the thickness of the dielectric 

A ARIR (x10) 

; Q 100 

© F 80 RE 38 

- 60 

r40 

S , = \e-(Volts) 
on T T T | an ca 

yw 60 80 100 

+20 — 433°C 

  
  T 

100 -80 -60 -40 2 

50°C 
+-1,0 

inet 55°C 

L909 62°C 

+ -100 
7C   

Fig. 2— AR/R as a function of V,, for the sample RE 38. 

material, D is the thickness of the amorphous film, k is the 

Boltzmann constant, T is the absolute temperature and 
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(R/(dR/dV;)), has the meaning referred above. In principle, 

a temperature independent Ny, means that the screening is 

provided by localized states situated near the Fermi level. In case 

of Nyz being thermally activated, the corresponding thermal 

activation energy corresponds to the energy difference between 

the level of screening and the Fermi level. 

The results obtained with the samples RE12, RE20, RE23, 

RE35, RE36, RE37 and RE38 are shown in Figure 3. The observed 
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Fig. 3 — Field-effect state density as a function of the inverse temperature for 

samples RE 12, RE 20, RE 23, RE35, RE36, RE37 and RE38. 

density of states varies within the range 16'°- 10° cm~* eV™’, 

which shows agreement with figures obtained by other 

authors [5,6] in samples produced by glow discharge. However, 

the general features of these curves do not show similarity with 
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those reférred in the literature. As a matter of fact, in our samples 

the density of carriers Ny, , responsible for the screening, not 

only decreases with temperature but also shows a tendency to 

level-off at high values of temperature. This behaviour is rather 

odd and appears to be in disagreement with the thermal variation 

of the electrical conductivity measured in the same specimens, 

as can be seen in Figure 4. 
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Fig. 4— Electrical conductivity as a function of temperature for samples 
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It could be thought that incorrections or deficiencies in the 

experimental set-up were the cause of these discrepancies. 

However, it is difficult to.accept this sort of explanation, since 

the results obtained with several samples in different conditions 

exhibit, besides reproducibility, a pattern of reasonable global 

coherence. Can it be the case that phenomena of recombination 

take place in these doped samples under stationary conditions of 

the field voltage, the rate of which increases with temperature? 

Another possible interpretation for the source of the observed 

behaviour can be found in the fact that the field-effect current 

is usually confined inside a narrow channel, 20-100 A thick, under 

a strong accumulation of charge carriers [7]. The surface, both 

in the immediate vicinity of the substrate and in the first deposited 

layers, will present electronic states which are mainly responsible 

for the screening of the electrostatic field. That would explain the 

different observed thermal behaviour of the electrical conductivity 

which is essentially dependent on the bulk electronic states. 
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